Suppr超能文献

揭开隐藏的议程:新闻报道与消费中的偏见。

Unveiling the hidden agenda: Biases in news reporting and consumption.

作者信息

Galeazzi Alessandro, Peruzzi Antonio, Brugnoli Emanuele, Delmastro Marco, Zollo Fabiana

机构信息

Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, 30172 Venice, Italy.

Department of Mathematics, University of Padova, 35121 Padova, Italy.

出版信息

PNAS Nexus. 2024 Oct 22;3(11):pgae474. doi: 10.1093/pnasnexus/pgae474. eCollection 2024 Nov.

Abstract

Recognizing the presence and impact of news outlets' biases on public discourse is a crucial challenge. Biased news significantly shapes how individuals perceive events, potentially jeopardizing public and individual wellbeing. In assessing news outlet reliability, the focus has predominantly centered on narrative bias, sidelining other biases such as selecting events favoring specific perspectives (selection bias). Leveraging machine learning techniques, we have compiled a six-year dataset of articles related to vaccines, categorizing them based on narrative and event types. Employing a Bayesian latent space model, we quantify both selection and narrative biases in news outlets. Results show third-party assessments align with narrative bias but struggle to identify selection bias accurately. Moreover, extreme and negative perspectives attract more attention, and consumption analysis unveils shared audiences among ideologically similar outlets, suggesting an echo chamber structure. Quantifying news outlets' selection bias is crucial for ensuring a comprehensive representation of global events in online debates.

摘要

认识到新闻媒体的偏见在公共话语中的存在及其影响是一项至关重要的挑战。有偏见的新闻极大地塑造了个人对事件的认知方式,可能会危及公众和个人的福祉。在评估新闻媒体的可靠性时,重点主要集中在叙事偏见上,而忽视了其他偏见,如选择有利于特定观点的事件(选择偏见)。利用机器学习技术,我们编制了一个为期六年的与疫苗相关的文章数据集,并根据叙事和事件类型对其进行分类。采用贝叶斯潜在空间模型,我们对新闻媒体中的选择偏见和叙事偏见进行量化。结果表明,第三方评估与叙事偏见相符,但难以准确识别选择偏见。此外,极端和负面的观点更受关注,消费分析揭示了意识形态相似的媒体之间存在共同的受众,这表明存在回音室结构。量化新闻媒体的选择偏见对于确保在线辩论中全面呈现全球事件至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验