Suppr超能文献

在护理点使用可穿戴声学传感技术对膝关节放射学前期骨关节炎进行分类。

Classifying Pre-Radiographic Osteoarthritis of the Knee Using Wearable Acoustics Sensing at the Point of Care.

作者信息

Nichols Christopher J, Özmen Göktuğ C, Richardson Kristine, Inan Omer T, Ewart Dave

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

School of Electrical and Computer Engineering and by courtesy, the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology.

出版信息

IEEE Sens J. 2023 Oct 23;23(23):29619-21629. doi: 10.1109/jsen.2023.3325153.

Abstract

This study was undertaken to determine if knee acoustic emissions (KAE) measured at the point of care with a wearable device can classify knees with pre-radiographic osteoarthritis (pre-OA) from healthy knees. We performed a single-center cross-sectional observational study comparing KAE in healthy knees to knees with clinical symptoms compatible with knee OA that did not meet classification criteria for radiographic knee OA. KAE were measured during scripted maneuvers performed in clinic exam rooms or similarly noisy medical center locations in healthy (n=20), pre-OA (n=11), and, for comparison, OA (n=12) knees. Acoustic features were extracted from the KAE and used to train models to classify pre-OA, OA, and control knees with logistic regression. Model performance was measured and optimized with Leave-One-Out Cross-Validation. Regressive sensitivity analysis was performed to combine acoustic information from individual maneuvers to further optimize performance. Test-retest reliability of KAE was measured with intraclass correlation analysis. Classification models trained with KAE were accurate for both pre-OA and OA (94% accurate, 0.96 and 0.99 area under a receiver operating characteristic curve (AUC), respectively). Acoustic features selected for use in the optimized models had high test-retest reliability by intrasession and intersession intraclass correlation analysis (mean intraclass correlation coefficient 0.971 +/- 0.08 standard deviation). Analysis of KAE measured in acoustically uncontrolled medical settings using an easily accessible wearable device accurately classified pre-OA knees from healthy control knees in our small cohort. Accessible methods of identifying pre-OA could enable regular joint health monitoring and improve OA treatment and rehabilitation outcomes.

摘要

本研究旨在确定使用可穿戴设备在床边测量的膝关节声发射(KAE)能否将影像学前期骨关节炎(pre-OA)的膝关节与健康膝关节区分开来。我们进行了一项单中心横断面观察性研究,比较健康膝关节与有膝关节OA临床症状但不符合影像学膝关节OA分类标准的膝关节的KAE。在诊所检查室或类似嘈杂的医疗中心场所,对健康(n = 20)、pre-OA(n = 11)以及作为对照的OA(n = 12)膝关节进行特定操作时测量KAE。从KAE中提取声学特征,并用于训练逻辑回归模型以对pre-OA、OA和对照膝关节进行分类。通过留一法交叉验证来测量和优化模型性能。进行回归敏感性分析,以合并来自各个操作的声学信息,进一步优化性能。用组内相关分析测量KAE的重测信度。用KAE训练的分类模型对pre-OA和OA均准确(准确率分别为94%,受试者工作特征曲线下面积(AUC)分别为0.96和0.99)。通过组内和组间组内相关分析,在优化模型中选择使用的声学特征具有较高的重测信度(平均组内相关系数0.971±0.08标准差)。在我们的小队列中,使用易于获取的可穿戴设备在声学未控制的医疗环境中测量的KAE分析能够准确地将pre-OA膝关节与健康对照膝关节区分开来。识别pre-OA的可及方法能够实现定期的关节健康监测,并改善OA的治疗和康复效果。

相似文献

本文引用的文献

1
Disease modification in osteoarthritis; pathways to drug approval.骨关节炎的疾病修饰;药物批准途径
Osteoarthr Cartil Open. 2020 Mar 10;2(2):100059. doi: 10.1016/j.ocarto.2020.100059. eCollection 2020 Jun.
7
A Feasibility Study on Tribological Origins of Knee Acoustic Emissions.膝关节声发射摩擦学起源的可行性研究。
IEEE Trans Biomed Eng. 2022 May;69(5):1685-1695. doi: 10.1109/TBME.2021.3127030. Epub 2022 Apr 21.
10
Early-stage symptomatic osteoarthritis of the knee - time for action.早期膝关节症状性骨关节炎 - 行动的时候到了。
Nat Rev Rheumatol. 2021 Oct;17(10):621-632. doi: 10.1038/s41584-021-00673-4. Epub 2021 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验