Cho Yohei, He Tianhao, Moss Benjamin, Benetti Daniele, Liang Caiwu, Tian Lei, Hart Lucy Jessica F, Wilson Anna A, Taniguchi Yu, Cui Junyi, Yang Mengya, Eslava Salvador, Yamaguchi Akira, Miyauchi Masahiro, Durrant James R
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom.
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
ACS Catal. 2024 Oct 24;14(21):16543-16550. doi: 10.1021/acscatal.4c03685. eCollection 2024 Nov 1.
This study examines the kinetic origins of the temperature dependence of photoelectrochemical water oxidation on nanostructured titania photoanodes. We observe that the photocurrent is enhanced at 50 °C relative to 20 °C, with this enhancement being most pronounced (by up to 70%) at low anodic potentials (<+0.6 V vs RHE). Over this low potential range, the photocurrent magnitude is largely determined by kinetic competition between water oxidation catalysis (WOC) and recombination between surface holes and bulk electrons (back electron-hole recombination, BER). We quantify the BER process by transient photocurrent analyses under pulsed irradiation. Remarkably, we find that the kinetics of BER (∼90 ms half-time) are independent of temperature. In contrast, the kinetics of WOC, determined from the analysis of the photoinduced absorption of accumulated surface holes, are found to accelerate up to 2-fold at 50 °C relative to 20 °C. We conclude that the enhanced photocurrent densities observed in the low-applied potential region result primarily from the accelerated WOC, reducing losses due to the competing BER pathway. At higher applied potentials (>+0.6 V vs RHE), a smaller (∼10%) enhancement in photocurrent density is observed at 50 °C relative to 20 °C. Photoinduced absorption studies, correlated with studies using triethanolamine as a hole scavenger, indicate that this more modest enhancement at anodic potentials primarily results from an enhanced charge separation efficiency. We conclude by discussing the implications of these results for the practical application of photoanodic WOC under solar irradiation, influenced by these temperature-independent and -dependent underlying kinetic processes.
本研究考察了纳米结构二氧化钛光阳极上光电化学水氧化温度依赖性的动力学起源。我们观察到,相对于20°C,在50°C时光电流增强,这种增强在低阳极电位(相对于可逆氢电极<+0.6 V)时最为显著(高达70%)。在这个低电位范围内,光电流大小主要由水氧化催化(WOC)与表面空穴和体相电子之间的复合(背向电子-空穴复合,BER)之间的动力学竞争决定。我们通过脉冲照射下的瞬态光电流分析来量化BER过程。值得注意的是,我们发现BER的动力学(90 ms半衰期)与温度无关。相比之下,通过对积累的表面空穴的光致吸收分析确定的WOC动力学,发现在50°C时相对于20°C加速了2倍。我们得出结论,在低施加电位区域观察到的增强光电流密度主要源于加速的WOC,减少了竞争BER途径造成的损失。在较高的施加电位(相对于可逆氢电极>+0.6 V)下,相对于20°C,在50°C时观察到光电流密度有较小(10%)的增强。光致吸收研究与使用三乙醇胺作为空穴清除剂的研究相关联,表明在阳极电位下这种较为适度的增强主要源于电荷分离效率的提高。我们通过讨论这些结果对太阳能照射下光阳极WOC实际应用的影响来结束本文,这些影响受这些与温度无关和相关的潜在动力学过程的影响。