Department of Chemistry, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom.
J Am Chem Soc. 2014 Feb 12;136(6):2564-74. doi: 10.1021/ja412058x. Epub 2014 Jan 30.
The kinetic competition between electron-hole recombination and water oxidation is a key consideration for the development of efficient photoanodes for solar driven water splitting. In this study, we employed three complementary techniques, transient absorption spectroscopy (TAS), transient photocurrent spectroscopy (TPC), and electrochemical impedance spectroscopy (EIS), to address this issue for one of the most widely studied photoanode systems: nanostructured hematite thin films. For the first time, we show a quantitative agreement between all three techniques. In particular, all three methods show the presence of a recombination process on the 10 ms to 1 s time scale, with the time scale and yield of this loss process being dependent upon applied bias. From comparison of data between these techniques, we are able to assign this recombination phase to recombination of bulk hematite electrons with long-lived holes accumulated at the semiconductor/electrolyte interface. The data from all three techniques are shown to be consistent with a simple kinetic model based on competition between this, bias dependent, recombination pathway and water oxidation by these long-lived holes. Contrary to most existing models, this simple model does not require the consideration of surface states located energetically inside the band gap. These data suggest two distinct roles for the space charge layer developed at the semiconductor/electrolyte interface under anodic bias. Under modest anodic bias (just anodic of flatband), this space charge layer enables the spatial separation of initially generated electrons and holes following photon absorption, generating relatively long-lived holes (milliseconds) at the semiconductor surface. However, under such modest bias conditions, the energetic barrier generated by the space charge layer field is insufficient to prevent the subsequent recombination of these holes with electrons in the semiconductor bulk on a time scale faster than water oxidation. Preventing this back electron-hole recombination requires the application of stronger anodic bias, and is a key reason why the onset potential for photocurrent generation in hematite photoanodes is typically ~500 mV anodic of flat band and therefore needs to be accounted for in electrode design for PEC water splitting.
电子-空穴复合与水氧化之间的动力学竞争是开发用于太阳能驱动水分解的高效光阳极的关键考虑因素。在这项研究中,我们采用了三种互补技术,瞬态吸收光谱(TAS)、瞬态光电流光谱(TPC)和电化学阻抗谱(EIS),来解决最广泛研究的光阳极体系之一:纳米结构赤铁矿薄膜中的这一问题。我们首次展示了这三种技术之间的定量一致性。特别是,所有三种方法都在 10 毫秒到 1 秒的时间尺度上显示出存在复合过程,该损失过程的时间尺度和产率取决于外加偏压。通过比较这些技术之间的数据,我们能够将这个复合阶段归因于体赤铁矿电子与半导体/电解质界面上积累的长寿命空穴的复合。所有三种技术的数据都与基于这种复合、与偏压相关的复合途径与这些长寿命空穴进行水氧化之间的竞争的简单动力学模型一致。与大多数现有模型相反,这种简单模型不需要考虑位于能带隙内的表面态。这些数据表明,在阳极偏压下,半导体/电解质界面处的空间电荷层具有两个不同的作用。在适度的阳极偏压(仅在平带阳极偏压处)下,这个空间电荷层可以使光子吸收后初始生成的电子和空穴在空间上分离,在半导体表面产生相对长寿命的空穴(毫秒级)。然而,在这种适度的偏压条件下,空间电荷层场产生的能量势垒不足以防止这些空穴随后与半导体体中的电子在快于水氧化的时间尺度上复合。防止这种背电子-空穴复合需要施加更强的阳极偏压,这是赤铁矿光阳极的光电流产生起始电位通常在平带阳极偏压 500 mV 左右的主要原因,因此需要在 PEC 水分解的电极设计中考虑到这一点。