GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, No. 1 Xinzao Road, Xinzao Town, Panyu District, Guangzhou 510005, China.
Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae576.
Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.
空间分辨转录组学(SRT)技术能够在原始状态下以空间分辨率进行基因表达谱分析。然而,目前的 SRT 技术存在局限性,表现为转录本检测灵敏度低或基因通量受限。这些限制导致基因测量的精度和覆盖度降低。针对这些问题,我们提出了 SpaGDA,这是一个基于深度学习的图域自适应框架,可用于空间分辨转录组学数据中的基因表达推断和细胞类型识别这两种情况,通过公平地从参考 scRNA-seq 数据中转移知识。通过对来自不同技术的多个 SRT 数据集进行系统的基准测试分析,SpaGDA 在这两种情况下均优于最先进的方法。进一步将 SpaGDA 应用于三个不同生物学背景的 SRT 数据集,不仅可以更好地恢复来自公共图谱和现有科学文献的既定知识,还可以更好地呈现基因的空间表达模式。总之,这些结果表明 SpaGDA 可以用于克服当前 SRT 数据的挑战,并提供更准确的生物学过程或疾病发展的见解。SpaGDA 可在 https://github.com/shenrb/SpaGDA 获得。