Suppr超能文献

SPACEL:基于深度学习的空间转录组结构特征分析。

SPACEL: deep learning-based characterization of spatial transcriptome architectures.

机构信息

Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.

出版信息

Nat Commun. 2023 Nov 22;14(1):7603. doi: 10.1038/s41467-023-43220-3.

Abstract

Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.

摘要

空间转录组学(ST)技术可在保留细胞二维(2D)空间坐标的情况下检测单个细胞/点的 mRNA 表达情况,从而使研究人员能够研究组织中转录组的空间分布;然而,对多个 ST 切片进行联合分析并将它们对齐以构建组织的三维(3D)堆栈仍然是一个挑战。在这里,我们引入了用于 ST 数据分析的深度学习空间结构特征刻画(SPACEL)。SPACEL 包含三个模块:Spoint 嵌入了一个多层感知器和一个概率模型,用于对单个 ST 切片中的每个点的细胞类型组成进行去卷积;Splane 采用图卷积网络方法和对抗性学习算法来识别在多个 ST 切片中在转录组和空间上一致的空间域;Scube 自动转换连续切片的空间坐标系并将它们堆叠在一起,以构建组织的 3D 结构。使用来自不同组织和 ST 技术的模拟和真实 ST 数据集,与 19 种最先进的方法进行比较表明,SPACEL 在细胞类型去卷积、空间域识别和 3D 对齐方面的性能优于其他方法,因此展示了 SPACEL 作为 ST 数据处理和分析的有价值的集成工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ec/10663563/ed436197afdc/41467_2023_43220_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验