Suppr超能文献

开发并验证一种针对接受机器人平台治疗的前列腺癌患者的新型合并症评分,并探讨其对达芬奇单端口系统的影响。

Development and validation of a novel comorbidity score specific for prostate cancer patients treated with robotic platform and its implication on DaVinci single-port system.

机构信息

Department of Urology, University of Illinois at Chicago, Chicago, IL, USA.

Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.

出版信息

J Robot Surg. 2024 Nov 7;18(1):400. doi: 10.1007/s11701-024-02152-w.

Abstract

To develop and validate a novel Comorbidity score for Robotic Surgery (CRS) in predicting severe complications after robot-assisted radical prostatectomy (RARP). Furthermore, we investigated the impact of the surgical platform (Multi-Port - MP vs Single-Port - SP) according to this score. We included 2085 ("development cohort") and 595 ("validation cohort") patients undergoing RARP at two tertiary referral centers between 2014 and March 2024 in a retrospective study. Statistical analyses included validation of the Charlson Comorbidity Index (CCI) to predict 30-day severe complications (Clavien-Dindo ≥ 3a), development and external validation of CRS using calibration plots and decision curve analysis. Lastly, locally weighted scatterplot smoothing (LOWESS) analysis was used to graphically explore the impact of the robotic platform according to novel CRS. CCI exhibited limited predictive ability for severe complications (60% in the validation cohort). In multivariable logistic regression analyses testing the correlation between each condition included in CCI and severe complications, diabetes and myocardial infarction resulted as independent predictors (OR 1.75 [95%CI 1.05-2.82]; OR 1.92 [95%CI 1.26-2.88]) and were subsequently fitted into a multivariable logistic model including age, previous abdominal surgery and obesity (BMI > 30). The resulting predictive model demonstrated superior discrimination and clinical net benefit in predicting severe complications compared to CCI (AUC 64 vs 60%). At LOWESS analysis, SP platform was associated with lower risk of severe complications as CRS increased compared to MP system. The validated CRS showed better accuracy compared to CCI in predicting severe complications after RARP. Additionally, the use of SP robotic platform may reduce the risk of severe complications in highly comorbid patients according to CRS.

摘要

为了开发和验证一种新的机器人手术合并症评分(CRS),以预测机器人辅助根治性前列腺切除术(RARP)后严重并发症。此外,我们根据该评分研究了手术平台(多孔- MP 与单孔- SP)的影响。我们回顾性分析了 2014 年至 2024 年 3 月在两个三级转诊中心接受 RARP 的 2085 例(“开发队列”)和 595 例(“验证队列”)患者的数据。统计分析包括验证 Charlson 合并症指数(CCI)预测 30 天严重并发症(Clavien-Dindo ≥ 3a)的能力,使用校准图和决策曲线分析开发和外部验证 CRS。最后,使用局部加权散点平滑(LOWESS)分析图形化地探索根据新的 CRS 机器人平台的影响。CCI 对严重并发症的预测能力有限(验证队列中为 60%)。在多变量逻辑回归分析中,测试 CCI 中包含的每种情况与严重并发症之间的相关性,糖尿病和心肌梗死是独立的预测因子(OR 1.75[95%CI 1.05-2.82];OR 1.92[95%CI 1.26-2.88]),随后将其拟合到包括年龄、既往腹部手术和肥胖(BMI>30)的多变量逻辑模型中。与 CCI 相比,该预测模型在预测严重并发症方面具有更高的区分度和临床净获益(AUC 64 比 60%)。在 LOWESS 分析中,与 MP 系统相比,随着 CRS 的增加,SP 平台与严重并发症风险降低相关。验证后的 CRS 在预测 RARP 后严重并发症方面比 CCI 具有更高的准确性。此外,根据 CRS,SP 机器人平台的使用可能会降低高合并症患者严重并发症的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验