Suppr超能文献

Mark3D——一个用于使用智能手机摄像头视频进行三维头部表面重建和电极位置配准的半自动开源工具箱。

Mark3D - A semi-automated open-source toolbox for 3D head- surface reconstruction and electrode position registration using a smartphone camera video.

作者信息

Ganguly Suranjita, Chhaya Malaaika Mihir, Jain Ankita, Koppula Aditya, Raghavan Mohan, Sridharan Kousik Sarathy

机构信息

Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India.

Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad, India.

出版信息

Med Biol Eng Comput. 2025 Mar;63(3):835-847. doi: 10.1007/s11517-024-03228-3. Epub 2024 Nov 7.

Abstract

Source localization in EEG necessitates co-registering the EEG sensor locations with the subject's MRI, where EEG sensor locations are typically captured using electromagnetic tracking or 3D scanning of the subject's head with EEG cap, using commercially available 3D scanners. Both methods have drawbacks, where, electromagnetic tracking is slow and immobile, while 3D scanners are expensive. Photogrammetry offers a cost-effective alternative but requires multiple photos to sample the head, with good spatial sampling to adequately reconstruct the head surface. Post-reconstruction, the existing tools for electrode position labelling on the 3D head-surface have limited visual feedback and do not easily accommodate customized montages, which are typical in multi-modal measurements. We introduce Mark3D, an open-source, integrated tool for 3D head-surface reconstruction from phone camera video. It eliminates the need for keeping track of spatial sampling during image capture for video-based photogrammetry reconstruction. It also includes blur detection algorithms, a user-friendly interface for electrode and tracking, and integrates with popular toolboxes such as FieldTrip and MNE Python. The accuracy of the proposed method was benchmarked with the head-surface derived from a commercially available handheld 3D scanner Einscan-Pro + (Shining 3D Inc.,) which we treat as the "ground truth". We used reconstructed head-surfaces of ground truth (G1) and phone camera video (M) to mark the EEG electrode locations in 3D space using a dedicated UI provided in the tool. The electrode locations were then used to form pseudo-specific MRI templates for individual subjects to reconstruct source information. Somatosensory source activations in response to vibrotactile stimuli were estimated and compared between G1 and M. The mean positional errors of the EEG electrodes between G1 and M in 3D space were found to be 0.09 ± 0.01 mm across different cortical areas, with temporal and occipital areas registering a relatively higher error than other regions such as frontal, central or parietal areas. The error in source reconstruction was found to be 0.033 ± 0.016 mm and 0.037 ± 0.017 mm in the left and right cortical hemispheres respectively.

摘要

脑电图(EEG)中的源定位需要将EEG传感器位置与受试者的磁共振成像(MRI)进行配准,其中EEG传感器位置通常使用电磁跟踪或使用市售3D扫描仪对佩戴EEG帽的受试者头部进行3D扫描来获取。这两种方法都有缺点,电磁跟踪速度慢且固定不动,而3D扫描仪价格昂贵。摄影测量法提供了一种经济高效的替代方案,但需要多张照片来对头部进行采样,并进行良好的空间采样以充分重建头部表面。重建后,用于在3D头部表面标记电极位置的现有工具视觉反馈有限,并且不容易适应定制的导联组合,而定制导联组合在多模态测量中很常见。我们介绍了Mark3D,这是一种用于从手机摄像头视频进行3D头部表面重建的开源集成工具。它消除了基于视频的摄影测量重建在图像采集过程中跟踪空间采样的需要。它还包括模糊检测算法、用于电极和跟踪的用户友好界面,并与FieldTrip和MNE Python等流行工具箱集成。我们将所提出方法的准确性与从市售手持式3D扫描仪Einscan-Pro +(闪铸三维科技有限公司)获得的头部表面进行了基准测试,我们将其视为“地面真值”。我们使用地面真值(G1)和手机摄像头视频(M)重建的头部表面,通过该工具中提供的专用用户界面在3D空间中标记EEG电极位置。然后使用电极位置为个体受试者形成伪特定MRI模板以重建源信息。估计并比较了G1和M之间对振动触觉刺激的体感源激活。发现在3D空间中,G1和M之间EEG电极的平均位置误差在不同皮质区域为0.09±0.01毫米,颞叶和枕叶区域的误差相对高于额叶、中央或顶叶等其他区域。发现左右皮质半球源重建的误差分别为0.033±0.016毫米和0.037±0.017毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验