Suppr超能文献

使用运动捕捉算法进行高密度 EEG 电极位置定位。

Algorithmic localization of high-density EEG electrode positions using motion capture.

机构信息

Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.

Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.

出版信息

J Neurosci Methods. 2020 Dec 1;346:108919. doi: 10.1016/j.jneumeth.2020.108919. Epub 2020 Aug 25.

Abstract

BACKGROUND

Accurate source localization from electroencephalography (EEG) requires electrode co-registration to brain anatomy, a process that depends on precise measurement of 3D scalp locations. Stylus digitizers and camera-based scanners for such measurements require the subject to remain still and therefore are not ideal for young children or those with movement disorders.

NEW METHOD

Motion capture accurately measures electrode position in one frame but marker placement adds significant setup time, particularly in high-density EEG. We developed an algorithm, named MoLo and implemented as an open-source MATLAB toolbox, to compute 3D electrode coordinates from a subset of positions measured in motion capture using spline interpolation. Algorithm accuracy was evaluated across 5 different-sized head models.

RESULTS

MoLo interpolation reduced setup time by approximately 10 min for 64-channel EEG. Mean electrode interpolation error was 2.95 ± 1.3 mm (range: 0.38-7.98 mm). Source localization errors with interpolated compared to true electrode locations were below 1 mm and 0.1 mm in 75 % and 35 % of dipoles, respectively.

COMPARISON WITH EXISTING METHODS

MoLo location accuracy is comparable to stylus digitizers and camera-scanners, common in clinical research. The MoLo algorithm could be deployed with other tools beyond motion capture, e.g., a stylus, to extract high-density EEG electrode locations from a subset of measured positions. The algorithm is particularly useful for research involving young children and others who cannot remain still for extended time periods.

CONCLUSIONS

Electrode position and source localization errors with MoLo are similar to other modalities supporting its use to measure high-density EEG electrode positions in research and clinical settings.

摘要

背景

准确的脑电图 (EEG) 源定位需要将电极与大脑解剖结构进行配准,这一过程依赖于对 3D 头皮位置的精确测量。用于此类测量的触笔式数字化仪和基于摄像机的扫描仪要求受试者保持静止,因此不适合幼儿或运动障碍患者。

新方法

运动捕捉可以准确测量一帧中的电极位置,但标记放置会增加大量的设置时间,尤其是在高密度 EEG 中。我们开发了一种名为 MoLo 的算法,并将其实现为一个开源的 MATLAB 工具箱,该算法使用样条插值从运动捕捉中测量的位置子集计算 3D 电极坐标。该算法在 5 个不同大小的头模型上进行了评估。

结果

对于 64 通道 EEG,MoLo 插值将设置时间减少了大约 10 分钟。平均电极插值误差为 2.95±1.3mm(范围:0.38-7.98mm)。与真实电极位置相比,源定位误差在 75%和 35%的偶极子中分别低于 1mm 和 0.1mm。

与现有方法的比较

MoLo 的位置精度与临床研究中常用的触笔式数字化仪和摄像机扫描仪相当。MoLo 算法可以与运动捕捉以外的其他工具一起部署,例如触笔,以从测量位置的子集提取高密度 EEG 电极位置。该算法对于涉及无法长时间保持静止的幼儿和其他人的研究特别有用。

结论

MoLo 的电极位置和源定位误差与支持其在研究和临床环境中测量高密度 EEG 电极位置的其他模式相似。

相似文献

1
Algorithmic localization of high-density EEG electrode positions using motion capture.
J Neurosci Methods. 2020 Dec 1;346:108919. doi: 10.1016/j.jneumeth.2020.108919. Epub 2020 Aug 25.
2
Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions.
J Neurosci Methods. 2019 Oct 1;326:108378. doi: 10.1016/j.jneumeth.2019.108378. Epub 2019 Jul 31.
5
Spatial localization of EEG electrodes using 3D scanning.
J Neural Eng. 2019 Apr;16(2):026020. doi: 10.1088/1741-2552/aafdd1. Epub 2019 Jan 11.
6
Using the MoBI motion capture system to rapidly and accurately localize EEG electrodes in anatomic space.
Eur J Neurosci. 2021 Dec;54(12):8396-8405. doi: 10.1111/ejn.15019. Epub 2021 Feb 21.
9
Development of volume conductor and source models to localize epileptic foci.
J Clin Neurophysiol. 2007 Apr;24(2):101-19. doi: 10.1097/WNP.0b013e318038fb3e.
10
Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain.
J Neurosci Methods. 2014 May 30;229:84-96. doi: 10.1016/j.jneumeth.2014.04.020. Epub 2014 Apr 24.

引用本文的文献

1
Effects of individualized brain anatomies and EEG electrode positions on inferred activity of the primary auditory cortex.
Front Neuroinform. 2022 Oct 13;16:970372. doi: 10.3389/fninf.2022.970372. eCollection 2022.

本文引用的文献

1
14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants.
Infant Behav Dev. 2020 Feb;58:101393. doi: 10.1016/j.infbeh.2019.101393. Epub 2019 Dec 9.
3
Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions.
J Neurosci Methods. 2019 Oct 1;326:108378. doi: 10.1016/j.jneumeth.2019.108378. Epub 2019 Jul 31.
4
Spatial localization of EEG electrodes using 3D scanning.
J Neural Eng. 2019 Apr;16(2):026020. doi: 10.1088/1741-2552/aafdd1. Epub 2019 Jan 11.
7
Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking.
Front Hum Neurosci. 2015 May 12;9:247. doi: 10.3389/fnhum.2015.00247. eCollection 2015.
8
Using a motion capture system for spatial localization of EEG electrodes.
Front Neurosci. 2015 Apr 20;9:130. doi: 10.3389/fnins.2015.00130. eCollection 2015.
9
Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance.
Front Neurosci. 2014 Mar 11;8:42. doi: 10.3389/fnins.2014.00042. eCollection 2014.
10
Effects of forward model errors on EEG source localization.
Brain Topogr. 2013 Jul;26(3):378-96. doi: 10.1007/s10548-012-0274-6. Epub 2013 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验