Suppr超能文献

提升精准洪水图绘制:彭亨州的脆弱性显现。

Enhancing precision flood mapping: Pahang's vulnerability unveiled.

机构信息

Department of Community Medicine, AIMST University, Bedong, Kedah, Malaysia.

Department of Community Medicine, MGMCRI, Sri Balaji Vidyapeeth (Deemed-to be-University), Pondicherry, India.

出版信息

PLoS One. 2024 Nov 7;19(11):e0310435. doi: 10.1371/journal.pone.0310435. eCollection 2024.

Abstract

Malaysia, particularly Pahang, experiences devastating floods annually, causing significant damage. The objective of the research was to create a flood susceptibility map for the designated area by employing an Ensemble Machine Learning (EML) algorithm based on geographic information system (GIS). By analyzing nine key factors from a geospatial database, flood susceptibility map was created with the ArcGIS software (ESRI ArcGIS Pro v3.0.1 x64). The Random Forest (RF) model was employed in this study to categorize the study area into distinct flood susceptibility classes. The Feature selection (FS) method was used to ranking the flood influencing factors. To validate the flood susceptibility models, standard statistical measures and the Area Under the Curve (AUC) were employed. The FS ranking demonstrated that the primary attributes to flooding in the study region are rainfall and elevation, with slope, geology, curvature, flow accumulation, flow direction, distance from the river, and land use/land cover (LULC) patterns ranking subsequently. The categories of 'very high' and 'high' class collectively made up 37.1% and 26.3% of the total area, respectively. The flood vulnerability assessment of Pahang found that the Eastern, Southern, and central regions were at high risk of flooding due to intense precipitation, low-lying topography with steep inclines, proximity to the shoreline and rivers, and abundant flooded vegetation, crops, urban areas, bare ground, and rangeland. Conversely, areas with dense tree canopies or forests were less susceptible to flooding in this research area. The ROC analysis demonstrated strong performance on the validation datasets, with an AUC value of >0.73 and accuracy scores exceeding 0.71. Research on flood susceptibility mapping can enhance risk reduction strategies and improve flood management in vulnerable areas. Technological advancements and expertise provide opportunities for more sophisticated methods, leading to better prepared and resilient communities.

摘要

马来西亚,特别是彭亨州,每年都会遭受破坏性洪水的侵袭,造成巨大损失。本研究旨在利用基于地理信息系统(GIS)的集成机器学习(EML)算法为指定区域创建洪水易感性图。通过分析地理空间数据库中的九个关键因素,使用 ArcGIS 软件(ESRI ArcGIS Pro v3.0.1 x64)创建了洪水易感性图。本研究采用随机森林(RF)模型将研究区域划分为不同的洪水易感性等级。特征选择(FS)方法用于对洪水影响因素进行排序。为了验证洪水易感性模型,采用了标准统计指标和曲线下面积(AUC)。FS 排序表明,对研究区域洪水影响最大的因素是降雨和海拔,其次是坡度、地质、曲率、汇流、水流方向、与河流的距离以及土地利用/土地覆盖(LULC)模式。“极高”和“高”类别合计占总面积的 37.1%和 26.3%。彭亨州的洪水脆弱性评估发现,由于强降水、低地势、坡度陡峭、靠近海岸线和河流以及丰富的洪水泛滥植被、作物、城市地区、裸露地面和牧场,东部、南部和中部地区面临高洪水风险。相反,本研究区域中树冠茂密或森林覆盖较多的地区不易发生洪水。ROC 分析表明,验证数据集的性能表现良好,AUC 值>0.73,准确率超过 0.71。洪水易感性图的研究可以增强脆弱地区的风险降低策略,并改善洪水管理。技术进步和专业知识为更复杂的方法提供了机会,从而使社区更有准备和更具弹性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/11542787/b850133f1fec/pone.0310435.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验