Suppr超能文献

利用机器学习方法识别 COVID-19 严重程度的免疫细胞标志物。

Recognition of Immune Cell Markers of COVID-19 Severity with Machine Learning Methods.

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

出版信息

Biomed Res Int. 2022 Apr 28;2022:6089242. doi: 10.1155/2022/6089242. eCollection 2022.

Abstract

COVID-19 is hypothesized to be linked to the host's excessive inflammatory immunological response to SARS-CoV-2 infection, which is regarded to be a major factor in disease severity and mortality. Numerous immune cells play a key role in immune response regulation, and gene expression analysis in these cells could be a useful method for studying disease states, assessing immunological responses, and detecting biomarkers. Here, we developed a machine learning procedure to find biomarkers that discriminate disease severity in individual immune cells (B cell, CD4 cell, CD8 cell, monocyte, and NK cell) using single-cell gene expression profiles of COVID-19. The gene features of each profile were first filtered and ranked using the Boruta feature selection method and mRMR, and the resulting ranked feature lists were then fed into the incremental feature selection method to determine the optimal number of features with decision tree and random forest algorithms. Meanwhile, we extracted the classification rules in each cell type from the optimal decision tree classifiers. The best gene sets discovered in this study were analyzed by GO and KEGG pathway enrichment, and some important biomarkers like TLR2, ITK, CX3CR1, IL1B, and PRDM1 were validated by recent literature. The findings reveal that the optimal gene sets for each cell type can accurately classify COVID-19 disease severity and provide insight into the molecular mechanisms involved in disease progression.

摘要

COVID-19 被假设与宿主对 SARS-CoV-2 感染的过度炎症免疫反应有关,这被认为是疾病严重程度和死亡率的一个主要因素。许多免疫细胞在免疫反应调节中发挥着关键作用,对这些细胞中的基因表达进行分析可能是研究疾病状态、评估免疫反应和检测生物标志物的一种有用方法。在这里,我们开发了一种机器学习程序,使用 COVID-19 的单细胞基因表达谱,在单个免疫细胞(B 细胞、CD4 细胞、CD8 细胞、单核细胞和 NK 细胞)中寻找区分疾病严重程度的生物标志物。首先使用 Boruta 特征选择方法和 mRMR 对每个谱的基因特征进行过滤和排序,然后将排序后的特征列表输入到增量特征选择方法中,使用决策树和随机森林算法确定最佳特征数量。同时,我们从最优决策树分类器中提取每个细胞类型的分类规则。通过对 GO 和 KEGG 通路富集分析,对本研究中发现的最佳基因集进行了分析,同时通过最近的文献验证了一些重要的生物标志物,如 TLR2、ITK、CX3CR1、IL1B 和 PRDM1。研究结果表明,每个细胞类型的最佳基因集可以准确地区分 COVID-19 疾病的严重程度,并深入了解疾病进展中涉及的分子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验