Suppr超能文献

正丁烯基苯酞恢复钙稳态,改善肌萎缩侧索硬化症 iPSCs 来源的运动神经元的神经退行性变。

n-Butylidenephthalide recovered calcium homeostasis to ameliorate neurodegeneration of motor neurons derived from amyotrophic lateral sclerosis iPSCs.

机构信息

Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan.

Everfront Biotech Inc., Taipei, Taiwan.

出版信息

PLoS One. 2024 Nov 7;19(11):e0311573. doi: 10.1371/journal.pone.0311573. eCollection 2024.

Abstract

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that causes muscle atrophy and primarily targets motor neurons (MNs). Approximately 20% of familial ALS cases are caused by gain-of-function mutations in superoxide dismutase 1 (SOD1), leading to MN degeneration and ion channel dysfunction. Previous studies have shown that n-Butylidenephthalide (BP) delays disease progression and prolongs survival in animal models of ALS. However, no studies have been conducted on models from human sources. Herein, we examined the protective efficacy of BP on MNs derived from induced pluripotent stem cells (iPSCs) of an ALS patient harboring the SOD1G85R mutation as well as on those derived from genetically corrected iPSCs (SOD1G85G). Our results demonstrated that the motor neurons differentiated from iPSC with SOD1G85R mutation exhibited characteristics of neuron degeneration (as indicated by the reduction of neurofilament expression) and ion channel dysfunction (in response to potassium chloride (KCl) and L-glutamate stimulation), in contrast to those derived from the gene corrected iPSC (SOD1G85G). Meanwhile, BP treatment effectively restored calcium ion channel function by reducing the expression of glutamate receptors including glutamate ionotropic receptor AMPA type subunit 3 (GluR3) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1). Additionally, BP treatment activated autophagic pathway to attenuate neuron degeneration. Overall, this study supports the therapeutic effects of BP on ALS patient-derived neuron cells, and suggests that BP may be a promising candidate for future drug development.

摘要

肌萎缩侧索硬化症(ALS)是一种不可治愈的神经退行性疾病,导致肌肉萎缩,主要针对运动神经元(MNs)。大约 20%的家族性 ALS 病例是由超氧化物歧化酶 1(SOD1)的功能获得性突变引起的,导致 MN 退化和离子通道功能障碍。先前的研究表明,正丁基苯酞(BP)可延缓 ALS 动物模型的疾病进展并延长生存期。然而,尚未在源自人类来源的模型中进行研究。在此,我们研究了 BP 对携带 SOD1G85R 突变的 ALS 患者诱导多能干细胞(iPSC)来源的 MN 以及对基因校正的 iPSC(SOD1G85G)来源的 MN 的保护作用。我们的结果表明,源自 SOD1G85R 突变的 iPSC 分化的运动神经元表现出神经元退化的特征(表现为神经丝表达减少)和离子通道功能障碍(对氯化钾(KCl)和 L-谷氨酸刺激的反应),与源自基因校正的 iPSC(SOD1G85G)的分化神经元不同。同时,BP 治疗通过减少包括谷氨酸离子型受体 AMPA 型亚单位 3(GluR3)和谷氨酸离子型受体 NMDA 型亚单位 1(NMDAR1)在内的谷氨酸受体的表达,有效地恢复了钙离子通道功能。此外,BP 治疗激活自噬途径以减轻神经元退化。总的来说,这项研究支持 BP 对 ALS 患者源性神经元细胞的治疗作用,并表明 BP 可能是未来药物开发的有希望的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d6/11542850/b1307ca4d503/pone.0311573.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验