Suppr超能文献

人工智能与手动选拔未来外科住院医师的比较。

Artificial Intelligence Compared to Manual Selection of Prospective Surgical Residents.

作者信息

Hassan Monalisa, Ayad Marco, Nembhard Christine, Hayes-Dixon Andrea, Lin Anna, Janjua Mahin, Franko Jan, Tee May

机构信息

Department of Surgery, Howard University Hospital, Washington, District of Columbia; Department of Surgery, University of California, Davis, California.

Department of Surgery, Howard University Hospital, Washington, District of Columbia.

出版信息

J Surg Educ. 2025 Jan;82(1):103308. doi: 10.1016/j.jsurg.2024.103308. Epub 2024 Nov 6.

Abstract

BACKGROUND

Artificial Intelligence (AI) in the selection of residency program applicants is a new tool that is gaining traction, with the aim of screening high numbers of applicants while introducing objectivity and mitigating bias in a traditionally subjective process. This study aims to compare applicants screened by an AI software to a single Program Director (PD) for interview selection.

METHODS

A single PD at an ACGME-accredited, academic general surgery program screened applicants. A parallel screen by AI software, programmed by the same PD, was conducted on the same pool of applicants. Weighted preferences were assigned in the following order: personal statement, research, medical school rankings, letters of recommendation, personal qualities, board scores, graduate degree, geographic preference, past experiences, program signal, honor society membership, and multilingualism. Statistical analyses were conducted by chi-square, ANOVA, and independent two-sided t-tests.

RESULTS

Out of 1235 applications, 144 applications were PD-selected and 150 AI-selected (294 top applications). Twenty applications (7.3%) were both PD and AI selected for a total analysis cohort of 274 prospective residents. We performed two analyses: 1) PD-selected vs. AI-selected vs. Both and 2) PD-selected vs. AI-selected with the overlapping applicants censored. For the first analysis, AI selected significantly: more White/Hispanic applicants (p < 0.001), less signals (p < 0.001), more AOA honors society (p = 0.016), and more publications (p < 0.001). When censoring overlapping PD and AI selection, AI selected significantly: more White/Hispanic applicants (p < 0.001), less signals (p < 0.001), more US medical graduates (p = 0.027), less applicants needing visa sponsorship (p = 0.01), younger applicants (p = 0.024), higher USMLE Step 2 CK scores (p < 0.001), and more publications (p < 0.001).

CONCLUSIONS

There was only a 7% overlap between PD-selected and AI-selected applicants for interview screening in the same applicant pool. Despite the same PD educating the AI software, the 2 application pools differed significantly. In its present state, AI may be utilized as a tool in resident application selection but should not completely replace human review. We recommend careful analysis of the performance of each AI model in the respective environment of each institution applying it, as it may alter the group of interviewees.

摘要

背景

在住院医师培训项目申请人选拔中使用人工智能(AI)是一种正在获得认可的新工具,旨在筛选大量申请人,同时在这个传统上主观的过程中引入客观性并减少偏差。本研究旨在比较由人工智能软件筛选的申请人与由单一项目主任(PD)筛选的申请人用于面试选拔的情况。

方法

在一个经ACGME认证的学术性普通外科项目中,由一位单一的项目主任筛选申请人。由同一位项目主任编写程序的人工智能软件对同一批申请人进行了平行筛选。按照以下顺序分配加权偏好:个人陈述、研究、医学院排名、推荐信、个人品质、委员会分数、研究生学位、地域偏好、过往经历、项目信号、荣誉社团成员身份和多语言能力。采用卡方检验、方差分析和独立双侧t检验进行统计分析。

结果

在1235份申请中,项目主任选出了144份申请,人工智能选出了150份申请(共294份顶级申请)。20份申请(7.3%)同时被项目主任和人工智能选中,形成了一个包含274名准住院医师的总分析队列。我们进行了两项分析:1)项目主任选出的与人工智能选出的与两者都选中的;2)项目主任选出的与人工智能选出的,剔除重叠的申请人。对于第一项分析,人工智能显著选出了:更多白人/西班牙裔申请人(p < 0.001)、更少的信号(p < 0.001)、更多的美国医学协会(AOA)荣誉社团成员(p = 0.016)以及更多的出版物(p < 0.001)。在剔除重叠的项目主任和人工智能选择后,人工智能显著选出了:更多白人/西班牙裔申请人(p < 0.001)、更少的信号(p < 0.001)、更多美国医学毕业生(p = 0.027)、更少需要签证担保的申请人(p = 0.01)、更年轻的申请人(p = 0.024)、更高的美国医师执照考试第二步临床知识(USMLE Step 2 CK)分数(p < 0.001)以及更多的出版物(p < 0.001)。

结论

在同一申请人池中,项目主任选出的和人工智能选出的用于面试筛选的申请人之间只有7%的重叠。尽管是同一位项目主任对人工智能软件进行培训,但这两个申请池存在显著差异。就目前的状态而言,人工智能可以用作住院医师申请选拔的一种工具,但不应完全取代人工审核。我们建议在每个应用人工智能模型的机构的各自环境中仔细分析每个人工智能模型的表现,因为它可能会改变面试者群体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验