Suppr超能文献

通过模型拟合、无模型和网络建模方法对不同生物质类型热解进行热重分析和动力学建模。

Thermogravimetric analysis and kinetic modeling of the pyrolysis of different biomass types by means of model-fitting, model-free and network modeling approaches.

作者信息

Fischer Olivier, Lemaire Romain, Bensakhria Ammar

机构信息

TFT Laboratory, Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3 Canada.

ESCOM, TIMR, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne Cedex, France.

出版信息

J Therm Anal Calorim. 2024;149(19):10941-10963. doi: 10.1007/s10973-023-12868-w. Epub 2024 Mar 21.

Abstract

This work aims at comparing the ability of 7 modeling approaches to simulate the pyrolysis kinetics of spruce wood, wheat straw, swine manure, miscanthus and switchgrass. Measurements were taken using a thermogravimetric analyzer (TGA) with 4 heating rates comprised between 5 and 30 K min. The obtained results were processed using 3 isoconversional methods (Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW) and Friedman), 1-step and 3-step Kissinger models, as well as an advanced fitting method recently proposed by Bondarchuk et al. [1] (Molecules 28:424, 2023, 10.3390/molecules28010424). Seventeen reaction models were considered to derive rate constant parameters, which were used to simulate the variation of the fuel conversion degree as a function of the temperature . To complement this benchmarking analysis of the modeling approaches commonly used to simulate biomass pyrolysis, a network model, the bio-CPD (chemical percolation devolatilization), was additionally considered. The suitability of each model was assessed by computing the root-mean-square deviation between simulated and measured profiles. As highlights, the model-free methods were found to accurately reproduce experimental results. The agreement between simulated and measured data was found to be higher with the Friedman model, followed by the KAS, FWO, 3-step, and 1-step Kissinger models. As for the bio-CPD, it failed to predict measured data as well as the above-listed models. To conclude, although it was less efficient than the Friedman, KAS or OFW models, the fitting approach from Bondarchuk et al. [1] (Molecules 28:424, 2023, 10.3390/molecules28010424) still led to satisfactory results, while having the advantage of not requiring the selection of a reaction model a priori.

摘要

这项工作旨在比较7种建模方法模拟云杉木、小麦秸秆、猪粪、芒草和柳枝稷热解动力学的能力。使用热重分析仪(TGA)在5至30 K·min之间的4种加热速率下进行测量。使用3种等转化率方法(基辛格-赤平-ose(KAS)、小泽-弗林-沃尔(OFW)和弗里德曼)、1步和3步基辛格模型以及邦达尔丘克等人最近提出的一种先进拟合方法[1](《分子》28:424,2023,10.3390/molecules28010424)对获得的结果进行处理。考虑了17种反应模型以推导速率常数参数,这些参数用于模拟燃料转化程度随温度的变化。为补充对常用于模拟生物质热解的建模方法的这一基准分析,还考虑了一种网络模型——生物化学渗流脱挥发分(bio-CPD)。通过计算模拟和测量曲线之间的均方根偏差来评估每个模型的适用性。值得注意的是,发现无模型方法能准确再现实验结果。发现弗里德曼模型模拟和测量数据之间的一致性更高,其次是KAS、FWO、3步和1步基辛格模型。至于生物CPD,它未能像上述模型那样很好地预测测量数据。总之,尽管邦达尔丘克等人[1](《分子》28:424,2023,10.3390/molecules28010424)的拟合方法不如弗里德曼、KAS或OFW模型有效,但仍能得出令人满意的结果,同时具有无需事先选择反应模型的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa5c/11538151/8381b062306c/10973_2023_12868_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验