Duprez Hadrien, Cances Solenn, Omahen Andraz, Masseroni Michele, Ruckriegel Max J, Adam Christoph, Tong Chuyao, Garreis Rebekka, Gerber Jonas D, Huang Wister, Gächter Lisa, Watanabe Kenji, Taniguchi Takashi, Ihn Thomas, Ensslin Klaus
Solid State Physics Laboratory, ETH Zurich, Zurich, CH-8093, ZH, Switzerland.
Research Center for Electronic and Optical Materials, National Institute for Materials Science, Namiki, 305-0044, Tsukuba, Japan.
Nat Commun. 2024 Nov 9;15(1):9717. doi: 10.1038/s41467-024-54121-4.
Current semiconductor qubits rely either on the spin or on the charge degree of freedom to encode quantum information. By contrast, in bilayer graphene the valley degree of freedom, stemming from the crystal lattice symmetry, is a robust quantum number that can therefore be harnessed for this purpose. The simplest implementation of a valley qubit would rely on two states with opposite valleys as in the case of a single-carrier bilayer graphene quantum dot immersed in a small perpendicular magnetic field (B ≲ 100 mT). However, the single-carrier quantum dot excited states spectrum has not been resolved to date in the relevant magnetic field range. Here, we fill this gap, by measuring the parallel and perpendicular magnetic field dependence of this spectrum with an unprecedented resolution of 4 μeV. We use a time-resolved charge detection technique that gives us access to individual tunnel events. Our results come as a direct verification of the predicted spectrum and establish a new upper-bound on inter-valley mixing, equal to our energy resolution. Our charge detection technique opens the door to measuring the relaxation time of a valley qubit in a single-carrier bilayer graphene quantum dot.
当前的半导体量子比特要么依靠自旋,要么依靠电荷自由度来编码量子信息。相比之下,在双层石墨烯中,源于晶格对称性的能谷自由度是一个稳健的量子数,因此可用于此目的。谷量子比特最简单的实现方式将依赖于具有相反能谷的两个状态,就像浸没在小垂直磁场(B≲100 mT)中的单载流子双层石墨烯量子点的情况一样。然而,单载流子量子点的激发态光谱在相关磁场范围内迄今尚未得到解析。在此,我们通过以前所未有的4 μeV分辨率测量该光谱的平行和垂直磁场依赖性来填补这一空白。我们使用一种时间分辨电荷检测技术,使我们能够获取单个隧穿事件。我们的结果直接验证了预测的光谱,并建立了一个新的能谷间混合上限,等于我们的能量分辨率。我们的电荷检测技术为测量单载流子双层石墨烯量子点中谷量子比特的弛豫时间打开了大门。