Kurzmann A, Eich M, Overweg H, Mangold M, Herman F, Rickhaus P, Pisoni R, Lee Y, Garreis R, Tong C, Watanabe K, Taniguchi T, Ensslin K, Ihn T
Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland.
National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
Phys Rev Lett. 2019 Jul 12;123(2):026803. doi: 10.1103/PhysRevLett.123.026803.
We report ground- and excited-state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for the two-particle spectra is found by analyzing finite bias spectroscopy data within a two-particle model including spin and valley degrees of freedom. We identify the two-hole ground state to be a spin-triplet and valley-singlet state. This spin alignment can be seen as Hund's rule for a valley-degenerate system, which is fundamentally different from quantum dots in carbon nanotubes, where the two-particle ground state is a spin-singlet state. The spin-singlet excited states are found to be valley-triplet states by tilting the magnetic field with respect to the sample plane. We quantify the exchange energy to be 0.35 meV and measure a valley and spin g factor of 36 and 2, respectively.
我们报告了在双层石墨烯中通过静电定义的少空穴量子点在平行和垂直施加磁场下的基态和激发态输运。通过在包含自旋和谷自由度的双粒子模型中分析有限偏置光谱数据,发现了双粒子光谱非常清晰的能级图。我们确定双空穴基态为自旋三重态和谷单重态。这种自旋排列可被视为谷简并系统的洪德规则,这与碳纳米管中的量子点根本不同,在碳纳米管中双粒子基态是自旋单重态。通过相对于样品平面倾斜磁场,发现自旋单重态激发态为谷三重态。我们将交换能量量化为0.35毫电子伏特,并分别测量了谷和自旋g因子为36和2。