Suppr超能文献

双层石墨烯/WSe量子器件中的可调自旋轨道分裂

Tunable Spin-Orbit Splitting in Bilayer Graphene/WSe Quantum Devices.

作者信息

Gerber Jonas D, Ersoy Efe, Masseroni Michele, Niese Markus, Laumer Michael, Denisov Artem O, Duprez Hadrien, Huang Wister Wei, Adam Christoph, Ostertag Lara, Tong Chuyao, Taniguchi Takashi, Watanabe Kenji, Fal'ko Vladimir I, Ihn Thomas, Ensslin Klaus, Knothe Angelika

机构信息

Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.

Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.

出版信息

Nano Lett. 2025 Aug 20;25(33):12480-12486. doi: 10.1021/acs.nanolett.5c02309. Epub 2025 Aug 7.

Abstract

Bilayer graphene (BLG)-based quantum devices represent a promising platform for emerging technologies, such as quantum computing and spintronics. However, their intrinsically weak spin-orbit coupling (SOC) complicates spin and valley manipulation. Integrating BLG with transition metal dichalcogenides (TMDs) enhances the SOC via proximity effects. While this enhancement has been demonstrated in 2D-layered structures, 1D and 0D nanostructures in BLG/TMD remain unrealized, with open questions regarding SOC strength and tunability. Here, we investigate quantum point contacts and quantum dots in two BLG/WSe heterostructures with different stacking orders. Across multiple devices, we reproducibly demonstrate spin-orbit splitting up to 1.5 meV─more than 1 order of magnitude higher than in pristine BLG. Furthermore, we show that the induced SOC can be tuned in situ from its maximum value to near-complete suppression via the perpendicular electric field. This enhancement and in situ tunability establish the SOC as a control mechanism for dynamic spin and valley manipulation.

摘要

基于双层石墨烯(BLG)的量子器件是量子计算和自旋电子学等新兴技术的一个很有前景的平台。然而,其固有的弱自旋轨道耦合(SOC)使自旋和能谷操控变得复杂。将BLG与过渡金属二硫属化物(TMD)集成可通过近邻效应增强SOC。虽然这种增强已在二维层状结构中得到证明,但BLG/TMD中的一维和零维纳米结构仍未实现,关于SOC强度和可调性存在一些未解决的问题。在这里,我们研究了具有不同堆叠顺序的两种BLG/WSe异质结构中的量子点接触和量子点。在多个器件中,我们可重复地证明自旋轨道分裂高达1.5毫电子伏特,比原始BLG高出1个多数量级。此外,我们表明,通过垂直电场可以将诱导的SOC从其最大值原位调谐到几乎完全抑制。这种增强和原位可调性将SOC确立为动态自旋和能谷操控的一种控制机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b6/12371879/d415380105ec/nl5c02309_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验