Deng Huiying, Liu Tingting, Zhao Wenshan, Wang Jundong, Zhang Yuesheng, Zhang Shuzhen, Yang Yu, Yang Chao, Teng Wenzhi, Chen Zhuo, Zheng Gengfeng, Li Fengwang, Su Yaqiong, Hui Jingshu, Wang Yuhang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, China.
Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
Nat Commun. 2024 Nov 9;15(1):9706. doi: 10.1038/s41467-024-54107-2.
CO electroreduction is a potential pathway to achieve net-zero emissions in the chemical industry. Yet, CO loss, resulting from (bi)carbonate formation, renders the process energy-intensive. Acidic environments can address the issue but at the expense of compromised product Faradaic efficiencies (FEs), particularly for multi-carbon (C) products, as rapid diffusion and migration of protons (H) favors competing H and CO production. Here, we present a strategy of tuning the 2-position substituent length on benzimidazole (BIM)-based copper (Cu) coordination polymer (CuCP) precatalyst - to enhance CO reduction to C products in acidic environments. Lengthening the substituent from H to nonyl enhances H diffusion retardation and decreases Cu-Cu coordination numbers (CNs), favoring further reduction of CO. This leads to a nearly 24× enhancement of selectivity towards CO hydrogenation and C-C coupling at 60 mA cm. We report the highest C product FE of more than 70% at 260 mA cm on pentyl-CuCP and demonstrate a CO-to-C single-pass conversion (SPC) of ~54% at 180 mA cm using pentyl-CuCP in zero-gap electrolyzers.
CO电还原是化工行业实现净零排放的一条潜在途径。然而,由(双)碳酸盐形成导致的CO损失使该过程能源密集。酸性环境可以解决这个问题,但代价是产品的法拉第效率(FEs)受损,特别是对于多碳(C)产品,因为质子(H)的快速扩散和迁移有利于竞争性的H和CO生成。在这里,我们提出了一种调节基于苯并咪唑(BIM)的铜(Cu)配位聚合物(CuCP)预催化剂上2位取代基长度的策略,以增强酸性环境中CO还原为C产品的能力。将取代基从H延长到壬基可增强H扩散阻滞并降低Cu-Cu配位数(CNs),有利于CO的进一步还原。这导致在60 mA cm时对CO加氢和C-C偶联的选择性提高了近24倍。我们报道了在戊基-CuCP上260 mA cm时超过70%的最高C产品FE,并在零间隙电解槽中使用戊基-CuCP在180 mA cm时展示了约54%的CO到C单程转化率(SPC)。