The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden; Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, United States.
Adv Immunol. 2024;164:73-100. doi: 10.1016/bs.ai.2024.08.002. Epub 2024 Sep 13.
The emergence and re-emergence of infectious diseases present significant global health threats. Understanding their pathogenesis is crucial for developing diagnostics, therapeutics, and preventive strategies. System-level integrative omics analysis offers a comprehensive approach to deciphering virus-host immunometabolic interactions during infections. Multi-omics approaches, integrating genomics, transcriptomics, proteomics, and metabolomics, provide holistic insights into disease mechanisms, host-pathogen interactions, and immune responses. The interplay between the immune system and metabolic processes, termed immunometabolism, has gained attention, particularly in infectious diseases. Immunometabolic studies reveal how metabolic processes regulate immune cell function, shaping immune responses and influencing infection outcomes. Metabolic reprogramming is crucial for immune cell activation, differentiation, and function. Using systems biological algorithms to understand the immunometabolic alterations can provide a holistic view of immune and metabolic pathway interactions, identifying regulatory nodes and predicting responses to perturbations. Understanding these pathways enhances the knowledge of immune regulation and offers avenues for therapeutic interventions. This review highlights the contributions of multi-omics systems biology studies in understanding infectious disease pathogenesis, focusing on RNA viruses. The integrative approach enables personalized medicine strategies, considering individual metabolic and immune variations. Leveraging these interdisciplinary approaches promises advancements in combating RNA virus infections and improving health outcomes, highlighting the transformative impact of multi-omics technologies in infectious disease research.
传染病的出现和再现对全球健康构成重大威胁。了解其发病机制对于开发诊断、治疗和预防策略至关重要。系统水平的综合组学分析提供了一种全面的方法,可以破译感染过程中病毒-宿主免疫代谢相互作用。多组学方法,整合基因组学、转录组学、蛋白质组学和代谢组学,为疾病机制、宿主-病原体相互作用和免疫反应提供了整体见解。免疫系统和代谢过程之间的相互作用,称为免疫代谢,已引起关注,特别是在传染病中。免疫代谢研究揭示了代谢过程如何调节免疫细胞功能,塑造免疫反应并影响感染结果。代谢重编程对于免疫细胞的激活、分化和功能至关重要。使用系统生物学算法来理解免疫代谢变化可以提供对免疫和代谢途径相互作用的整体看法,确定调节节点并预测对干扰的反应。了解这些途径增强了对免疫调节的认识,并为治疗干预提供了途径。这篇综述强调了多组学系统生物学研究在理解传染病发病机制方面的贡献,重点关注 RNA 病毒。这种综合方法能够实现个体化医学策略,考虑个体的代谢和免疫差异。利用这些跨学科方法有望在对抗 RNA 病毒感染和改善健康结果方面取得进展,突显了多组学技术在传染病研究中的变革性影响。