Ahadian Krisnanda, Yudistira Novanto, Rahayudi Bayu, Basori Ahmad Hoirul, Malebary Sharaf J, Alesawi Sami, Mansur Andi Besse Firdausiah, Alorfi Almuhannad S, Barukab Omar M
Informatics Department, Faculty of Computer Science, Brawijaya University, 65145, Malang, Indonesia.
Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Rabigh, 21911, Makkah, Saudi Arabia.
Heliyon. 2024 Oct 19;10(21):e39569. doi: 10.1016/j.heliyon.2024.e39569. eCollection 2024 Nov 15.
Maize stands out as a versatile commodity, finding applications in food and animal feed industries. Notably, half of the total demand for maize is met through its utilization as animal feed. Despite its importance, maize cultivation often grapples with crop failures resulting from delayed disease management or insufficient knowledge about these diseases, impeding timely intervention. The advent of technological advancements, particularly in Machine Learning, presents solutions to address these challenges. This research focuses on employing a Convolutional Neural Network (CNN) to classify maize plant diseases. Two datasets form the foundation of this study. The first dataset encompasses 4144 images distributed across 4 classes, while the second dataset comprises 5155 images distributed among 7 to 8 classes. The second dataset encounters issues related to imbalanced class distribution, where certain classes possess substantially more data than others. To mitigate this imbalance, the weighted cross-entropy loss method is employed. During experimentation, three distinct architectural models-ResNet-18, VGG16, and EfficientNet-are rigorously tested. Additionally, various optimizers are explored, with noteworthy results indicating that both datasets achieve peak accuracy through the use of the SGD (Stochastic Gradient Descent) optimization. For the first dataset, optimal results are obtained with the VGG16 architecture, leveraging a frozen layer in the classification stage and achieving an impressive accuracy of 97.146 %. Shifting the focus to the second dataset, the most favorable outcome is realized by employing the EfficientNet architecture without a frozen layer, coupled with the implementation of weighted loss to address the class imbalance, resulting in an accuracy of 94.798 %.
玉米是一种用途广泛的商品,在食品和动物饲料行业都有应用。值得注意的是,玉米总需求的一半是通过用作动物饲料来满足的。尽管玉米很重要,但由于疾病管理延迟或对这些疾病的了解不足,玉米种植常常面临作物歉收的问题,阻碍了及时干预。技术进步的出现,特别是机器学习领域的进步,为解决这些挑战提供了方案。本研究专注于使用卷积神经网络(CNN)对玉米植物病害进行分类。两个数据集构成了本研究的基础。第一个数据集包含分布在4个类别中的4144张图像,而第二个数据集包含分布在7至8个类别中的5155张图像。第二个数据集存在类别分布不均衡的问题,某些类别拥有的数据比其他类别多得多。为了缓解这种不均衡,采用了加权交叉熵损失方法。在实验过程中,对三种不同的架构模型——ResNet - 18、VGG16和EfficientNet——进行了严格测试。此外,还探索了各种优化器,值得注意的结果表明,两个数据集通过使用SGD(随机梯度下降)优化都达到了最高准确率。对于第一个数据集,使用VGG16架构并在分类阶段利用冻结层获得了最佳结果,准确率达到了令人印象深刻的97.146%。将重点转向第二个数据集,通过采用没有冻结层的EfficientNet架构,并结合实施加权损失来解决类别不均衡问题,实现了最有利的结果,准确率为94.798%。