Suppr超能文献

用于远程患者监测应用的三角费马模糊EDAS模型的开发。

Development of a triangular Fermatean fuzzy EDAS model for remote patient monitoring applications.

作者信息

Khan Asghar, Islam Saeed, Ismail Muhammad, Alotaibi Abdulaziz

机构信息

Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.

Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, P.O Box 1664, 31952, Al Khobar, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 1;15(1):22073. doi: 10.1038/s41598-025-00914-6.

Abstract

Remote Patient Monitoring Systems (RPMS) are vital for tracking patients' health outside clinical settings, such as at home or in long-term care facilities. Wearable sensors play a crucial role in these systems by continuously collecting and transmitting health data. However, selecting the optimal sensor is challenging due to the wide variety of available options and diverse patient needs. To address this paper, introduce score and accuracy functions for Triangular Fermatean Fuzzy Numbers (TFFNs) and propose a novel Triangular Fermatean Fuzzy Sugeno-Weber Weighted Average (TFFSWWA) aggregation operator. In this paper establish key properties of TFFSWWA, confirming its ability to manage fuzzy uncertainty effectively. Using TFFSWWA, we develop an improved Evaluation based on Distance from Average Solution (EDAS) method for multi-criteria group decision-making (MCGDM) under TFFN settings. A case study on wearable sensor selection demonstrates the proposed model's efficiency. We present an algorithm and a flowchart to guide the decision-making process, alongside a computational example that verifies the method's reliability. Sensitivity analysis and comparison with existing methods show that the proposed approach improves decision accuracy and stability, highlighting its practical utility in healthcare decision-making.

摘要

远程患者监测系统(RPMS)对于在临床环境之外跟踪患者健康状况至关重要,例如在家中或长期护理机构。可穿戴传感器通过持续收集和传输健康数据在这些系统中发挥着关键作用。然而,由于可用选项繁多且患者需求各异,选择最佳传感器具有挑战性。为解决此问题,引入三角费马模糊数(TFFN)的得分和准确性函数,并提出一种新颖的三角费马模糊Sugeno-Weber加权平均(TFFSWWA)聚合算子。本文建立了TFFSWWA的关键属性,证实其有效管理模糊不确定性的能力。使用TFFSWWA,我们开发了一种改进的基于与平均解距离的评估(EDAS)方法,用于TFFN设置下的多准则群体决策(MCGDM)。一项关于可穿戴传感器选择的案例研究证明了所提出模型的效率。我们给出一种算法和一个流程图来指导决策过程,以及一个验证该方法可靠性的计算示例。敏感性分析和与现有方法的比较表明,所提出的方法提高了决策准确性和稳定性,突出了其在医疗决策中的实际效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验