Suppr超能文献

使用深度学习的钙成像信号自动去噪软件。

Automated denoising software for calcium imaging signals using deep learning.

作者信息

Kamran Sharif Amit, Moghnieh Hussein, Hossain Khondker Fariha, Bartlett Allison, Tavakkoli Alireza, Drumm Bernard T, Sanders Kenton M, Baker Salah A

机构信息

Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA.

Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA.

出版信息

Heliyon. 2024 Oct 22;10(21):e39574. doi: 10.1016/j.heliyon.2024.e39574. eCollection 2024 Nov 15.

Abstract

Dynamic Ca signaling is crucial for cell survival and death, and Ca imaging approaches are commonly used to study and measure cellular Ca patterns within cells. However, the presence of image noise from instrumentation and experimentation protocols can impede the accurate extraction of Ca signals. Removing noise from Ca Spatio-Temporal Maps (STMaps) is essential for precisely analyzing Ca datasets. Current methods for denoising STMaps can be time-consuming and subjective and rely mainly on image processing protocols. To address this, we developed CalDenoise, an automated software that employs robust image processing and deep learning models to remove noise and enhance Ca signals in STMaps effectively. CalDenoise integrates four pipelines capable of efficiently removing salt-and-pepper, impulsive, and periodic noise and detecting and removing background noise. Comprising both an image-processing-based pipeline and three generative-adversarial-network-based (GAN) deep learning models, CalDenoise proficiently removes complex noise patterns. The software features adjustable parameters to enhance accuracy and is integrated into a user-friendly graphical interface for easy access and streamlined usage. CalDenoise can serve as a robust platform for denoising complex dynamic fluorescence signal images across diverse cell types, including Ca, voltage, ions, and pH signals.

摘要

动态钙信号传导对于细胞存活和死亡至关重要,钙成像方法通常用于研究和测量细胞内的细胞钙模式。然而,仪器设备和实验方案产生的图像噪声会妨碍钙信号的准确提取。从钙时空图(STMaps)中去除噪声对于精确分析钙数据集至关重要。当前用于STMaps去噪的方法可能既耗时又主观,并且主要依赖于图像处理协议。为了解决这个问题,我们开发了CalDenoise,这是一款自动化软件,它采用强大的图像处理和深度学习模型来有效去除噪声并增强STMaps中的钙信号。CalDenoise集成了四个管道,能够有效去除椒盐噪声、脉冲噪声和周期性噪声,并检测和去除背景噪声。CalDenoise由一个基于图像处理的管道和三个基于生成对抗网络(GAN)的深度学习模型组成,能够熟练去除复杂的噪声模式。该软件具有可调节参数以提高准确性,并集成到用户友好的图形界面中,便于访问和简化使用。CalDenoise可以作为一个强大的平台,用于对包括钙、电压、离子和pH信号在内的多种细胞类型的复杂动态荧光信号图像进行去噪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad4c/11546308/18c16e6e05b1/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验