Suppr超能文献

基于盲去噪和混合注意力的双阶段 MRI 图像恢复。

Dual stage MRI image restoration based on blind spot denoising and hybrid attention.

机构信息

School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, 430023, China.

Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

出版信息

BMC Med Imaging. 2024 Sep 28;24(1):259. doi: 10.1186/s12880-024-01437-8.

Abstract

BACKGROUND

Magnetic Resonance Imaging (MRI) is extensively utilized in clinical diagnostics and medical research, yet the imaging process is often compromised by noise interference. This noise arises from various sources, leading to a reduction in image quality and subsequently hindering the accurate interpretation of image details by clinicians. Traditional denoising methods typically assume that noise follows a Gaussian distribution, thereby neglecting the more complex noise types present in MRI images, such as Rician noise. As a result, denoising remains a challenging and practical task.

METHOD

The main research work of this paper focuses on modifying mask information based on a global mask mapper. The mask mapper samples all blind spot pixels on the denoised image and maps them to the same channel. By incorporating perceptual loss, it utilizes all available information to improve performance while avoiding identity mapping. During the denoising process, the model may mistakenly remove some useful information as noise, resulting in a loss of detail in the denoised image. To address this issue, we train a generative adversarial network (GAN) with adaptive hybrid attention to restore the detailed information in the denoised MRI images.

RESULT

The two-stage model NRAE shows an improvement of nearly 1.4 dB in PSNR and approximately 0.1 in SSIM on clinical datasets compared to other classic models. Specifically, compared to the baseline model, PSNR is increased by about 0.6 dB, and SSIM is only 0.015 lower. From a visual perspective, NRAE more effectively restores the details in the images, resulting in richer and clearer representation of image details.

CONCLUSION

We have developed a deep learning-based two-stage model to address noise issues in medical MRI images. This method not only successfully reduces noise signals but also effectively restores anatomical details. The current results indicate that this is a promising approach. In future work, we plan to replace the current denoising network with more advanced models to further enhance performance.

摘要

背景

磁共振成像(MRI)在临床诊断和医学研究中得到了广泛应用,但成像过程常常受到噪声干扰。这种噪声来自于多个来源,导致图像质量下降,从而影响临床医生对图像细节的准确解读。传统的去噪方法通常假设噪声服从高斯分布,因此忽略了 MRI 图像中存在的更复杂的噪声类型,如瑞利噪声。因此,去噪仍然是一项具有挑战性和实际意义的任务。

方法

本文的主要研究工作集中在基于全局掩模映射器修改掩模信息上。掩模映射器对去噪图像上的所有盲像素进行采样,并将它们映射到同一个通道。通过引入感知损失,它利用所有可用信息来提高性能,同时避免身份映射。在去噪过程中,模型可能会错误地将一些有用的信息误认为噪声而去除,导致去噪图像的细节丢失。为了解决这个问题,我们使用具有自适应混合注意力的生成对抗网络(GAN)来恢复去噪 MRI 图像中的详细信息。

结果

与其他经典模型相比,两阶段模型 NRAE 在临床数据集上的 PSNR 提高了近 1.4dB,SSIM 提高了约 0.1。具体来说,与基线模型相比,PSNR 提高了约 0.6dB,SSIM 仅降低了 0.015。从视觉角度来看,NRAE 更有效地恢复了图像中的细节,使图像细节的表示更加丰富和清晰。

结论

我们开发了一种基于深度学习的两阶段模型来解决医学 MRI 图像中的噪声问题。该方法不仅成功地降低了噪声信号,而且有效地恢复了解剖细节。目前的结果表明,这是一种很有前途的方法。在未来的工作中,我们计划用更先进的模型来替代当前的去噪网络,以进一步提高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验