Suppr超能文献

SMART-PET:一种用于重建低计数[18F]-FDG-PET脑成像的自相似感知生成对抗框架。

SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging.

作者信息

Raymond Confidence, Zhang Dong, Cabello Jorge, Liu Linshan, Moyaert Paulien, Burneo Jorge G, Dada Michael O, Hicks Justin W, Finger Elizabeth, Soddu Andrea, Andrade Andrea, Jurkiewicz Michael T, Anazodo Udunna C

机构信息

Multimodal Imaging of Neurodegenerative Diseases (MiND) Lab, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.

Department of Medical Biophysics, Western University, London, ON, Canada.

出版信息

Front Nucl Med. 2024 Nov 19;4:1469490. doi: 10.3389/fnume.2024.1469490. eCollection 2024.

Abstract

INTRODUCTION

In Positron Emission Tomography (PET) imaging, the use of tracers increases radioactive exposure for longitudinal evaluations and in radiosensitive populations such as pediatrics. However, reducing injected PET activity potentially leads to an unfavorable compromise between radiation exposure and image quality, causing lower signal-to-noise ratios and degraded images. Deep learning-based denoising approaches can be employed to recover low count PET image signals: nonetheless, most of these methods rely on structural or anatomic guidance from magnetic resonance imaging (MRI) and fails to effectively preserve global spatial features in denoised PET images, without impacting signal-to-noise ratios.

METHODS

In this study, we developed a novel PET only deep learning framework, the Self-SiMilARiTy-Aware Generative Adversarial Framework (SMART), which leverages Generative Adversarial Networks (GANs) and a self-similarity-aware attention mechanism for denoising [18F]-fluorodeoxyglucose (18F-FDG) PET images. This study employs a combination of prospective and retrospective datasets in its design. In total, 114 subjects were included in the study, comprising 34 patients who underwent 18F-Fluorodeoxyglucose PET (FDG) PET imaging for drug-resistant epilepsy, 10 patients for frontotemporal dementia indications, and 70 healthy volunteers. To effectively denoise PET images without anatomical details from MRI, a self-similarity attention mechanism (SSAB) was devised. which learned the distinctive structural and pathological features. These SSAB-enhanced features were subsequently applied to the SMART GAN algorithm and trained to denoise the low-count PET images using the standard dose PET image acquired from each individual participant as reference. The trained GAN algorithm was evaluated using image quality measures including structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized root mean square (NRMSE), Fréchet inception distance (FID), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR).

RESULTS

In comparison to the standard-dose, SMART-PET had on average a SSIM of 0.984 ± 0.007, PSNR of 38.126 ± 2.631 dB, NRMSE of 0.091 ± 0.028, FID of 0.455 ± 0.065, SNR of 0.002 ± 0.001, and CNR of 0.011 ± 0.011. Regions of interest measurements obtained with datasets decimated down to 10% of the original counts, showed a deviation of less than 1.4% when compared to the ground-truth values.

DISCUSSION

In general, SMART-PET shows promise in reducing noise in PET images and can synthesize diagnostic quality images with a 90% reduction in standard of care injected activity. These results make it a potential candidate for clinical applications in radiosensitive populations and for longitudinal neurological studies.

摘要

引言

在正电子发射断层扫描(PET)成像中,使用示踪剂会增加纵向评估以及儿科等辐射敏感人群的放射性暴露。然而,减少注入的PET活性可能会在辐射暴露和图像质量之间产生不利的权衡,导致信噪比降低和图像质量下降。基于深度学习的去噪方法可用于恢复低计数PET图像信号:尽管如此,这些方法大多依赖于磁共振成像(MRI)的结构或解剖学指导,并且无法在不影响信噪比的情况下有效地保留去噪PET图像中的全局空间特征。

方法

在本研究中,我们开发了一种仅基于PET的新型深度学习框架,即自相似性感知生成对抗框架(SMART),该框架利用生成对抗网络(GAN)和自相似性感知注意力机制对[18F] - 氟脱氧葡萄糖(18F - FDG)PET图像进行去噪。本研究在其设计中采用了前瞻性和回顾性数据集的组合。该研究共纳入114名受试者,包括34例因耐药性癫痫接受18F - 氟脱氧葡萄糖PET(FDG)PET成像的患者、10例因额颞叶痴呆适应症接受成像的患者以及70名健康志愿者。为了在没有MRI解剖细节的情况下有效地对PET图像进行去噪,设计了一种自相似性注意力机制(SSAB),该机制学习独特的结构和病理特征。随后将这些SSAB增强的特征应用于SMART GAN算法,并使用从每个个体参与者获取的标准剂量PET图像作为参考进行训练,以对低计数PET图像进行去噪。使用包括结构相似性指数测量(SSIM)、峰值信噪比(PSNR)、归一化均方根(NRMSE)、弗雷歇初始距离(FID)、信噪比(SNR)和对比噪声比(CNR)在内的图像质量指标对训练后的GAN算法进行评估。

结果

与标准剂量相比,SMART - PET的平均SSIM为0.984±0.007,PSNR为38.126±2.631 dB,NRMSE为0.091±0.028,FID为0.455±0.065,SNR为0.002±0.001,CNR为0.011±0.011。使用下采样至原始计数10%的数据集获得的感兴趣区域测量结果与真实值相比,偏差小于1.4%。

讨论

总体而言,SMART - PET在降低PET图像噪声方面显示出前景,并且可以在将标准护理注入活性降低90%的情况下合成诊断质量的图像。这些结果使其成为辐射敏感人群临床应用以及纵向神经学研究的潜在候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e64/11611550/9987bce4c851/fnume-04-1469490-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验