Suppr超能文献

通过整合单细胞RNA分析和批量RNA测序鉴定并验证一种基于新型固有淋巴细胞的特征,以预测肝癌的预后和免疫反应。

Identification and validation of a novel innate lymphoid cell-based signature to predict prognosis and immune response in liver cancer by integrated single-cell RNA analysis and bulk RNA sequencing.

作者信息

Pan Meng, Yuan Xiaolong, Peng Junlu, Wu Ruiqi, Chen Xiaopeng

机构信息

Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.

Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.

出版信息

Transl Cancer Res. 2024 Oct 31;13(10):5395-5416. doi: 10.21037/tcr-24-725. Epub 2024 Oct 28.

Abstract

BACKGROUND

Innate lymphoid cells (ILCs) exert tumor suppressive and tumor promoting effects. However, the prognostic significance of ILC-associated genes remains unclear in hepatocellular carcinoma (HCC). Hence, the aim of this research was to develop an innovative predictive risk classification system using bioinformatics examination.

METHODS

We explored the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to gather data pertaining to HCC and its clinical details. Significantly different ILC-associated genes were investigated by Seurat analysis. The number of signaling interactions of ILCs with other cells was discovered by CellPhoneDB analysis. ClusterProfiler and Metascape were utilized to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on ILC genes. In order to identify potential ILC predictors, we utilized univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses, subsequently validating these predictors in TCGA and GEO groups. The multi-omics ILC signature model's clinical predictive capabilities, along with drug sensitivity and immune factor relations, were assessed using Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and pRRophetic. We investigated the possible molecular pathways in our predictive ILC signature through the utilization of gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). Five key genes were screened out by constructing a competing endogenous RNA (ceRNA) network using Cytoscape and their values in clinical indexes were demonstrated. Immunohistochemistry (IHC) in HCC cases confirmed the expression of these genes.

RESULTS

ILC cell subsets were identified, and cell-cell communication analysis revealed that the signaling pathways involving ILC cell subsets were mostly abundant in the HCC microenvironment. Subsequently, 270 marker genes of the ILC clusters were subjected to GO and KEGG enrichment analysis. Furthermore, a total of 58 prognostically relevant genes were screened as features for prognostic prediction models. Next, the models were validated and clinically evaluated (P values of Kaplan-Meier survival curves below 0.05). Five key genes (, and ) were further screened by multi omics analysis of immune cell and factor and drug sensitivity and correlation analysis of tumor regulatory genes in liver cancer. Furthermore, the potential clinical value of the 5 key genes was confirmed in HCC patients. Finally, the IHC results confirmed the expression of , , , , and in HCC. Our experimental results provided preliminary evidence supporting the oncogenic roles of and , as well as the tumor-suppressive roles of , , and in HCC.

CONCLUSIONS

A novel prognostic feature of ILC potentially involved in HCC was discovered. It showed high values in predicting patient overall survival (OS) as well as good differences in immunity and drug sensitivity. Therefore, targeting these ILC signatures may be a potential effective approach in HCC treatment.

摘要

背景

固有淋巴细胞(ILC)具有肿瘤抑制和肿瘤促进作用。然而,ILC相关基因在肝细胞癌(HCC)中的预后意义仍不明确。因此,本研究的目的是通过生物信息学分析开发一种创新的预测风险分类系统。

方法

我们探索了基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)数据库,以收集与HCC及其临床细节相关的数据。通过Seurat分析研究显著不同的ILC相关基因。通过CellPhoneDB分析发现ILC与其他细胞的信号相互作用数量。利用ClusterProfiler和Metascape对ILC基因进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。为了识别潜在的ILC预测因子,我们使用单变量Cox回归和最小绝对收缩和选择算子(LASSO)分析,随后在TCGA和GEO组中验证这些预测因子。使用通过估计RNA转录本相对子集进行细胞类型鉴定(CIBERSORT)和pRRophetic评估多组学ILC特征模型的临床预测能力,以及药物敏感性和免疫因子关系。我们通过基因集富集分析(GSEA)和基因集变异分析(GSVA)研究了预测性ILC特征中可能的分子途径。使用Cytoscape构建竞争性内源性RNA(ceRNA)网络筛选出五个关键基因,并展示了它们在临床指标中的值。HCC病例的免疫组织化学(IHC)证实了这些基因的表达。

结果

鉴定了ILC细胞亚群,细胞间通讯分析表明,涉及ILC细胞亚群的信号通路在HCC微环境中大多丰富。随后,对ILC簇的270个标记基因进行了GO和KEGG富集分析。此外,共筛选出58个与预后相关的基因作为预后预测模型的特征。接下来,对模型进行了验证和临床评估(Kaplan-Meier生存曲线的P值低于0.05)。通过对免疫细胞和因子的多组学分析以及肝癌肿瘤调控基因的药物敏感性和相关性分析,进一步筛选出五个关键基因(、和)。此外,在HCC患者中证实了这五个关键基因的潜在临床价值。最后,IHC结果证实了、、、和在HCC中的表达。我们的实验结果提供了初步证据,支持和在HCC中的致癌作用,以及、和在HCC中的肿瘤抑制作用。

结论

发现了ILC潜在参与HCC的一种新的预后特征。它在预测患者总生存期(OS)方面具有很高的价值,并且在免疫和药物敏感性方面有良好的差异。因此,针对这些ILC特征可能是HCC治疗的一种潜在有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56f/11543044/1004178eff46/tcr-13-10-5395-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验