Suppr超能文献

分析马来西亚新冠肺炎疫情趋势及人类活动强度

Analyzing the Trends of COVID-19 and Human Activity Intensity in Malaysia.

作者信息

Chin Wei Chien Benny, Chan Chun-Hsiang

机构信息

Department of Geography, National University of Singapore, Singapore 117570, Singapore.

Undergraduate Program in Intelligent Computing and Big Data, Chung Yuan Christian University, Taoyuan City 320314, Taiwan.

出版信息

Trop Med Infect Dis. 2023 Jan 19;8(2):72. doi: 10.3390/tropicalmed8020072.

Abstract

COVID-19 has struck the world with multiple waves. Each wave was caused by a variant and presented different peaks and baselines. This made the identification of waves with the time series of the cases a difficult task. Human activity intensities may affect the occurrence of an outbreak. We demonstrated a metric of time series, namely log-moving-average-ratio (LMAR), to identify the waves and directions of the changes in the disease cases and check-ins (MySejahtera). Based on the detected waves and changes, we explore the relationship between the two. Using the stimulus-organism-response model with our results, we presented a four-stage model: (1) government-imposed movement restrictions, (2) revenge travel, (3) self-imposed movement reduction, and (4) the new normal. The inverse patterns between check-ins and pandemic waves suggested that the self-imposed movement reduction would naturally happen and would be sufficient for a smaller epidemic wave. People may spontaneously be aware of the severity of epidemic situations and take appropriate disease prevention measures to reduce the risks of exposure and infection. In summary, LMAR is more sensitive to the waves and could be adopted to characterize the association between travel willingness and confirmed disease cases.

摘要

新冠疫情已多波冲击全球。每一波疫情均由一种变异毒株引发,呈现出不同的峰值和基线。这使得依据病例时间序列来识别疫情波成为一项艰巨任务。人类活动强度可能影响疫情爆发。我们展示了一种时间序列指标,即对数移动平均比率(LMAR),以识别疾病病例和打卡记录(马来西亚健康应用程序)的疫情波及其变化方向,并检验两者之间的关系。基于检测到的疫情波和变化,我们探究了两者间的关系。结合研究结果采用刺激—机体—反应模型,我们提出了一个四阶段模型:(1)政府实施行动限制,(2)报复性出行,(3)自行减少出行,(4)新常态。打卡记录与疫情波之间的反向模式表明,自行减少出行会自然发生,且足以应对规模较小的疫情波。人们可能会自发意识到疫情的严重性,并采取适当的疾病预防措施以降低暴露和感染风险。总之,LMAR对疫情波更为敏感,可用于刻画出行意愿与确诊病例之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec1/9967257/a7fe38c31168/tropicalmed-08-00072-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验