Djebra Y, Liu X, Marin T, Tiss A, Dhaynaut M, Guehl N, Johnson K, El Fakhri G, Ma C, Ouyang J
Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Yale School of Medicine, New Haven, CT, USA.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635805. Epub 2024 Aug 22.
Positron Emission Tomography (PET) is a valuable imaging method for studying molecular-level processes in the body, such as hyperphosphorylated tau (p-tau) protein aggregates, a hallmark of several neurodegenerative diseases including Alzheimer's disease. P-tau density and cerebral perfusion can be quantified from PET data using tracer kinetic modeling techniques. However, noise in PET images leads to uncertainty in the estimated kinetic parameters. This can be quantified in a Bayesian framework by the posterior distribution of kinetic parameters given PET measurements. Markov Chain Monte Carlo (MCMC) techniques can be employed to estimate the posterior distribution, although with significant computational needs. In this paper, we propose to leverage deep learning inference efficiency to infer the posterior distribution. A novel approach using denoising diffusion probabilistic model (DDPM) is introduced. The performance of the proposed method was evaluated on a [18F]MK6240 study and compared to an MCMC method. Our approach offered significant reduction in computation time (over 30 times faster than MCMC) and consistently predicted accurate (< 0.8 % mean error) and precise (< 5.77 % standard deviation error) posterior distributions.
正电子发射断层扫描(PET)是一种用于研究人体分子水平过程的重要成像方法,例如过度磷酸化的tau(p-tau)蛋白聚集体,这是包括阿尔茨海默病在内的几种神经退行性疾病的一个标志。可以使用示踪剂动力学建模技术从PET数据中量化p-tau密度和脑灌注。然而,PET图像中的噪声会导致估计的动力学参数存在不确定性。这可以在贝叶斯框架中通过给定PET测量值的动力学参数的后验分布来量化。马尔可夫链蒙特卡罗(MCMC)技术可用于估计后验分布,不过计算量很大。在本文中,我们建议利用深度学习推理效率来推断后验分布。介绍了一种使用去噪扩散概率模型(DDPM)的新方法。在一项[18F]MK6240研究中评估了所提出方法的性能,并与MCMC方法进行了比较。我们的方法显著减少了计算时间(比MCMC快30多倍),并始终能预测出准确(平均误差<0.8%)且精确(标准差误差<5.77%)的后验分布。