Djebra Yanis, Liu Xiaofeng, Marin Thibault, Tiss Amal, Dhaynaut Maeva, Guehl Nicolas, Johnson Keith, Fakhri Georges El, Ma Chao, Ouyang Jinsong
IEEE Trans Med Imaging. 2025 Jul 15;PP. doi: 10.1109/TMI.2025.3588859.
Positron Emission Tomography (PET) is a valuable imaging method for studying molecular-level processes in the body, such as hyperphosphorylated tau (p-tau) protein aggregates, a hallmark of several neurodegenerative diseases including Alzheimer's disease. P-tau density and cerebral perfusion can be quantified from dynamic PET images using tracer kinetic modeling techniques. However, noise in PET images leads to uncertainty in the estimated kinetic parameters, which can be quantified by estimating the posterior distribution of kinetic parameters using Bayesian inference (BI). Markov Chain Monte Carlo (MCMC) techniques are commonly used for posterior estimation but with significant computational needs. This work proposes an Improved Denoising Diffusion Probabilistic Model (iDDPM)-based method to estimate the posterior distribution of kinetic parameters in dynamic PET, leveraging the high computational efficiency of deep learning. The performance of the proposed method was evaluated on a [18F]MK6240 study and compared to a Conditional Variational Autoencoder with dual decoder (CVAE-DD)-based method and a Wasserstein GAN with gradient penalty (WGAN-GP)-based method. Posterior distributions inferred from Metropolis-Hasting MCMC were used as reference. Our approach consistently outperformed the CVAE-DD and WGAN-GP methods and offered significant reduction in computation time than the MCMC method (over 230 times faster), inferring accurate (< 0.67% mean error) and precise (< 7.23% standard deviation error) posterior distributions.
正电子发射断层扫描(PET)是一种用于研究人体分子水平过程的重要成像方法,例如过度磷酸化的tau(p-tau)蛋白聚集体,这是包括阿尔茨海默病在内的几种神经退行性疾病的一个标志。可以使用示踪剂动力学建模技术从动态PET图像中量化p-tau密度和脑灌注。然而,PET图像中的噪声会导致估计的动力学参数存在不确定性,这可以通过使用贝叶斯推理(BI)估计动力学参数的后验分布来量化。马尔可夫链蒙特卡罗(MCMC)技术通常用于后验估计,但计算需求很大。这项工作提出了一种基于改进去噪扩散概率模型(iDDPM)的方法来估计动态PET中动力学参数的后验分布,利用深度学习的高计算效率。在一项[18F]MK6240研究中评估了所提出方法的性能,并与基于双解码器的条件变分自编码器(CVAE-DD)方法和基于梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)方法进行了比较。将从 metropolis-Hasting MCMC推断出的后验分布用作参考。我们的方法始终优于CVAE-DD和WGAN-GP方法,并且与MCMC方法相比计算时间显著减少(快230多倍),推断出准确(平均误差<0.67%)和精确(标准差误差<7.23%)的后验分布。