Suppr超能文献

基于去噪扩散概率模型的 PET 图像去噪。

PET image denoising based on denoising diffusion probabilistic model.

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, 32611, FL, USA.

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.

Abstract

PURPOSE

Due to various physical degradation factors and limited counts received, PET image quality needs further improvements. The denoising diffusion probabilistic model (DDPM) was a distribution learning-based model, which tried to transform a normal distribution into a specific data distribution based on iterative refinements. In this work, we proposed and evaluated different DDPM-based methods for PET image denoising.

METHODS

Under the DDPM framework, one way to perform PET image denoising was to provide the PET image and/or the prior image as the input. Another way was to supply the prior image as the network input with the PET image included in the refinement steps, which could fit for scenarios of different noise levels. 150 brain [[Formula: see text]F]FDG datasets and 140 brain [[Formula: see text]F]MK-6240 (imaging neurofibrillary tangles deposition) datasets were utilized to evaluate the proposed DDPM-based methods.

RESULTS

Quantification showed that the DDPM-based frameworks with PET information included generated better results than the nonlocal mean, Unet and generative adversarial network (GAN)-based denoising methods. Adding additional MR prior in the model helped achieved better performance and further reduced the uncertainty during image denoising. Solely relying on MR prior while ignoring the PET information resulted in large bias. Regional and surface quantification showed that employing MR prior as the network input while embedding PET image as a data-consistency constraint during inference achieved the best performance.

CONCLUSION

DDPM-based PET image denoising is a flexible framework, which can efficiently utilize prior information and achieve better performance than the nonlocal mean, Unet and GAN-based denoising methods.

摘要

目的

由于各种物理退化因素和接收的有限计数,PET 图像质量需要进一步提高。去噪扩散概率模型(DDPM)是一种基于分布学习的模型,它试图根据迭代细化将正态分布转换为特定的数据分布。在这项工作中,我们提出并评估了基于不同 DDPM 的 PET 图像去噪方法。

方法

在 DDPM 框架下,进行 PET 图像去噪的一种方法是提供 PET 图像和/或先验图像作为输入。另一种方法是将先验图像作为网络输入,在细化步骤中包含 PET 图像,这适用于不同噪声水平的情况。利用 150 个脑 [[Formula: see text]F]FDG 数据集和 140 个脑 [[Formula: see text]F]MK-6240(成像神经原纤维缠结沉积)数据集评估所提出的基于 DDPM 的方法。

结果

定量结果表明,包含 PET 信息的基于 DDPM 的框架生成的结果优于非局部均值、Unet 和基于生成对抗网络(GAN)的去噪方法。在模型中添加额外的 MR 先验有助于获得更好的性能,并在图像去噪过程中进一步降低不确定性。仅依赖 MR 先验而忽略 PET 信息会导致较大的偏差。区域和表面定量结果表明,在推断过程中,将 MR 先验作为网络输入,同时将 PET 图像作为数据一致性约束嵌入,可获得最佳性能。

结论

基于 DDPM 的 PET 图像去噪是一种灵活的框架,它可以有效地利用先验信息,并比非局部均值、Unet 和基于 GAN 的去噪方法取得更好的性能。

相似文献

1
PET image denoising based on denoising diffusion probabilistic model.
Eur J Nucl Med Mol Imaging. 2024 Jan;51(2):358-368. doi: 10.1007/s00259-023-06417-8. Epub 2023 Oct 3.
2
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels.
Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2549-2562. doi: 10.1007/s00259-025-07122-4. Epub 2025 Feb 6.
4
PET image denoising using unsupervised deep learning.
Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2780-2789. doi: 10.1007/s00259-019-04468-4. Epub 2019 Aug 29.
6
CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model.
Med Phys. 2024 Sep;51(9):6246-6258. doi: 10.1002/mp.17258. Epub 2024 Jun 18.
7
A Denoising Diffusion Probabilistic Model for Metal Artifact Reduction in CT.
IEEE Trans Med Imaging. 2024 Oct;43(10):3521-3532. doi: 10.1109/TMI.2024.3416398. Epub 2024 Oct 28.
9
Direct Reconstruction of Linear Parametric Images From Dynamic PET Using Nonlocal Deep Image Prior.
IEEE Trans Med Imaging. 2022 Mar;41(3):680-689. doi: 10.1109/TMI.2021.3120913. Epub 2022 Mar 2.

引用本文的文献

1
The potential of generative AI with prostate-specific membrane antigen (PSMA) PET/CT: challenges and future directions.
Med Rev (2021). 2025 Jan 24;5(4):265-276. doi: 10.1515/mr-2024-0086. eCollection 2025 Aug.
2
A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.
Med Image Anal. 2025 Jul 30;106:103729. doi: 10.1016/j.media.2025.103729.
5
Real-time volumetric CBCT reconstruction using surface and X-ray imaging for image-guided radiotherapy.
Med Image Anal. 2025 Jun 20;105:103694. doi: 10.1016/j.media.2025.103694.
8
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels.
Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2549-2562. doi: 10.1007/s00259-025-07122-4. Epub 2025 Feb 6.
10
Generation of short-term follow-up chest CT images using a latent diffusion model in COVID-19.
Jpn J Radiol. 2025 Apr;43(4):622-633. doi: 10.1007/s11604-024-01699-w. Epub 2024 Nov 25.

本文引用的文献

1
Federated Transfer Learning for Low-dose PET Denoising: A Pilot Study with Simulated Heterogeneous Data.
IEEE Trans Radiat Plasma Med Sci. 2023 Mar;7(3):284-295. doi: 10.1109/trpms.2022.3194408. Epub 2022 Jul 27.
2
Image Super-Resolution via Iterative Refinement.
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4713-4726. doi: 10.1109/TPAMI.2022.3204461. Epub 2023 Mar 7.
3
Deep learning based low-activity PET reconstruction of [C]PiB and [F]FE-PE2I in neurodegenerative disorders.
Neuroimage. 2022 Oct 1;259:119412. doi: 10.1016/j.neuroimage.2022.119412. Epub 2022 Jun 24.
4
Score-based diffusion models for accelerated MRI.
Med Image Anal. 2022 Aug;80:102479. doi: 10.1016/j.media.2022.102479. Epub 2022 May 13.
5
A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose PET.
Eur J Nucl Med Mol Imaging. 2022 May;49(6):1843-1856. doi: 10.1007/s00259-021-05644-1. Epub 2021 Dec 24.
6
Towards lower-dose PET using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data.
Med Image Anal. 2021 Oct;73:102187. doi: 10.1016/j.media.2021.102187. Epub 2021 Jul 27.
7
Image enhancement of whole-body oncology [F]-FDG PET scans using deep neural networks to reduce noise.
Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):539-549. doi: 10.1007/s00259-021-05478-x. Epub 2021 Jul 28.
9
Micro-Networks for Robust MR-Guided Low Count PET Imaging.
IEEE Trans Radiat Plasma Med Sci. 2020 Apr 8;5(2):202-212. doi: 10.1109/TRPMS.2020.2986414. eCollection 2021 Mar.
10
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging.
Eur J Nucl Med Mol Imaging. 2021 Jul;48(8):2405-2415. doi: 10.1007/s00259-020-05167-1. Epub 2021 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验