Suppr超能文献

使用扩散模型进行联合不确定性估计的贝叶斯磁共振成像重建。

Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models.

作者信息

Luo Guanxiong, Blumenthal Moritz, Heide Martin, Uecker Martin

机构信息

Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.

Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.

出版信息

Magn Reson Med. 2023 Jul;90(1):295-311. doi: 10.1002/mrm.29624. Epub 2023 Mar 13.

Abstract

PURPOSE

We introduce a framework that enables efficient sampling from learned probability distributions for MRI reconstruction.

METHOD

Samples are drawn from the posterior distribution given the measured k-space using the Markov chain Monte Carlo (MCMC) method, different from conventional deep learning-based MRI reconstruction techniques. In addition to the maximum a posteriori estimate for the image, which can be obtained by maximizing the log-likelihood indirectly or directly, the minimum mean square error estimate and uncertainty maps can also be computed from those drawn samples. The data-driven Markov chains are constructed with the score-based generative model learned from a given image database and are independent of the forward operator that is used to model the k-space measurement.

RESULTS

We numerically investigate the framework from these perspectives: (1) the interpretation of the uncertainty of the image reconstructed from undersampled k-space; (2) the effect of the number of noise scales used to train the generative models; (3) using a burn-in phase in MCMC sampling to reduce computation; (4) the comparison to conventional -wavelet regularized reconstruction; (5) the transferability of learned information; and (6) the comparison to fastMRI challenge.

CONCLUSION

A framework is described that connects the diffusion process and advanced generative models with Markov chains. We demonstrate its flexibility in terms of contrasts and sampling patterns using advanced generative priors and the benefits of also quantifying the uncertainty for every pixel.

摘要

目的

我们引入一种框架,该框架能够从学习到的概率分布中进行高效采样以用于磁共振成像(MRI)重建。

方法

使用马尔可夫链蒙特卡罗(MCMC)方法从给定测量k空间的后验分布中抽取样本,这与传统的基于深度学习的MRI重建技术不同。除了可以通过间接或直接最大化对数似然来获得图像的最大后验估计外,还可以从抽取的样本中计算最小均方误差估计和不确定性图。数据驱动的马尔可夫链是通过从给定图像数据库中学习的基于得分的生成模型构建的,并且独立于用于对k空间测量进行建模的前向算子。

结果

我们从以下几个角度对该框架进行了数值研究:(1)对从欠采样k空间重建的图像的不确定性的解释;(2)用于训练生成模型的噪声尺度数量的影响;(3)在MCMC采样中使用预热阶段以减少计算量;(4)与传统的小波正则化重建的比较;(5)学习到的信息的可转移性;以及(6)与fastMRI挑战的比较。

结论

描述了一种将扩散过程和先进的生成模型与马尔可夫链相连接的框架。我们使用先进的生成先验证明了其在对比度和采样模式方面的灵活性,以及对每个像素的不确定性进行量化的好处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验