Suppr超能文献

AlphaFold2 在刚性球状蛋白以外的结构预测中的优势和陷阱。

The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.

Abstract

Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind's AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.

摘要

近年来,人工智能驱动的蛋白质结构预测技术取得了进展,由此引发了一个问题:蛋白质结构预测问题是否已经得到解决?本文重点关注非球状蛋白质,在其生物学和治疗应用的背景下,强调 DeepMind 的 AlphaFold2 的诸多优势和潜在弱点。我们总结了使用预测局部距离差异测试(pLDDT)和预测对齐误差(PAE)值评估 AlphaFold2 模型质量和可靠性的细微差别。我们强调了 AlphaFold2 可以应用于各种类别的蛋白质,以及其中涉及的注意事项。讨论了如何将 AlphaFold2 模型与实验数据(小角 X 射线散射(SAXS)、溶液 NMR、冷冻电镜(cryo-EM)和 X 射线衍射)相结合的具体示例。最后,我们强调需要超越刚性、静态结构快照的结构预测,转向构象 ensemble 和替代的与生物学相关的状态。总体主题是,在使用 AlphaFold2 生成的模型生成可测试的假设和结构模型时,需要谨慎考虑,而不是将预测模型视为事实上的真实结构。

相似文献

1
The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.
3
Reliability of AlphaFold2 Models in Virtual Drug Screening: A Focus on Selected Class A GPCRs.
Int J Mol Sci. 2024 Sep 21;25(18):10139. doi: 10.3390/ijms251810139.
4
Conformational switching and flexibility in cobalamin-dependent methionine synthase studied by small-angle X-ray scattering and cryoelectron microscopy.
Proc Natl Acad Sci U S A. 2023 Jun 27;120(26):e2302531120. doi: 10.1073/pnas.2302531120. Epub 2023 Jun 20.
5
What Can We Learn from Wide-Angle Solution Scattering?
Adv Exp Med Biol. 2017;1009:131-147. doi: 10.1007/978-981-10-6038-0_8.
7
Cross-Validation of Data Compatibility Between Small Angle X-ray Scattering and Cryo-Electron Microscopy.
J Comput Biol. 2017 Jan;24(1):13-30. doi: 10.1089/cmb.2016.0139. Epub 2016 Oct 6.
8
SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2.
PLoS Comput Biol. 2022 Aug 22;18(8):e1010483. doi: 10.1371/journal.pcbi.1010483. eCollection 2022 Aug.
9
The breakthrough in protein structure prediction.
Biochem J. 2021 May 28;478(10):1885-1890. doi: 10.1042/BCJ20200963.
10
Recent Advances and Challenges in Protein Structure Prediction.
J Chem Inf Model. 2024 Jan 8;64(1):76-95. doi: 10.1021/acs.jcim.3c01324. Epub 2023 Dec 18.

引用本文的文献

1
AI/ML-empowered approaches for predicting T Cell-mediated immunity and beyond.
Front Immunol. 2025 Aug 29;16:1651533. doi: 10.3389/fimmu.2025.1651533. eCollection 2025.
3
Protein Structural Phylogenetics.
Genome Biol Evol. 2025 Jul 30;17(8). doi: 10.1093/gbe/evaf139.
4
Structural basis for the dynamic regulation of mTORC1 by amino acids.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09428-7.
5
Approaches to Study Proteins Encoded by Essential Genes.
Proteins. 2025 Aug 15. doi: 10.1002/prot.70039.
6
AlphaFold 3 accurately models natural variants of catalase KatA.
Microbiol Spectr. 2025 Sep 2;13(9):e0067025. doi: 10.1128/spectrum.00670-25. Epub 2025 Aug 12.
8
Thermal shift assay to identify ligands for bacterial sensor proteins.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf033.
9
Molecular recognition and structural plasticity in amyloid-nucleic acid complexes.
J Struct Biol. 2025 Jul 14;217(3):108233. doi: 10.1016/j.jsb.2025.108233.
10
Evolution of macromolecular crystallography beamlines at the Swiss Light Source and SwissFEL.
J Synchrotron Radiat. 2025 Sep 1;32(Pt 5):1162-1183. doi: 10.1107/S1600577525005016. Epub 2025 Jul 14.

本文引用的文献

1
OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization.
Nat Methods. 2024 Aug;21(8):1514-1524. doi: 10.1038/s41592-024-02272-z. Epub 2024 May 14.
2
Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins.
Comput Struct Biotechnol J. 2023 Jun 2;21:3248-3258. doi: 10.1016/j.csbj.2023.06.001. eCollection 2023.
3
How accurately can one predict drug binding modes using AlphaFold models?
Elife. 2023 Dec 22;12:RP89386. doi: 10.7554/eLife.89386.
4
Accurate modeling of peptide-MHC structures with AlphaFold.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
5
Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking.
Nat Commun. 2023 Dec 13;14(1):8283. doi: 10.1038/s41467-023-43681-6.
7
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.
Nat Methods. 2024 Jan;21(1):110-116. doi: 10.1038/s41592-023-02087-4. Epub 2023 Nov 30.
9
How AlphaFold2 shaped the structural coverage of the human transmembrane proteome.
Sci Rep. 2023 Nov 20;13(1):20283. doi: 10.1038/s41598-023-47204-7.
10
Integrating AlphaFold and deep learning for atomistic interpretation of cryo-EM maps.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad405.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验