Suppr超能文献

AlphaFold2 在刚性球状蛋白以外的结构预测中的优势和陷阱。

The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.

Abstract

Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind's AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.

摘要

近年来,人工智能驱动的蛋白质结构预测技术取得了进展,由此引发了一个问题:蛋白质结构预测问题是否已经得到解决?本文重点关注非球状蛋白质,在其生物学和治疗应用的背景下,强调 DeepMind 的 AlphaFold2 的诸多优势和潜在弱点。我们总结了使用预测局部距离差异测试(pLDDT)和预测对齐误差(PAE)值评估 AlphaFold2 模型质量和可靠性的细微差别。我们强调了 AlphaFold2 可以应用于各种类别的蛋白质,以及其中涉及的注意事项。讨论了如何将 AlphaFold2 模型与实验数据(小角 X 射线散射(SAXS)、溶液 NMR、冷冻电镜(cryo-EM)和 X 射线衍射)相结合的具体示例。最后,我们强调需要超越刚性、静态结构快照的结构预测,转向构象 ensemble 和替代的与生物学相关的状态。总体主题是,在使用 AlphaFold2 生成的模型生成可测试的假设和结构模型时,需要谨慎考虑,而不是将预测模型视为事实上的真实结构。

相似文献

5
What Can We Learn from Wide-Angle Solution Scattering?宽角散射法能告诉我们什么?
Adv Exp Med Biol. 2017;1009:131-147. doi: 10.1007/978-981-10-6038-0_8.
8
SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2.用 Alphafold2 对蛋白质组合和构象异质性进行采样。
PLoS Comput Biol. 2022 Aug 22;18(8):e1010483. doi: 10.1371/journal.pcbi.1010483. eCollection 2022 Aug.
9
The breakthrough in protein structure prediction.蛋白质结构预测的突破。
Biochem J. 2021 May 28;478(10):1885-1890. doi: 10.1042/BCJ20200963.
10
Recent Advances and Challenges in Protein Structure Prediction.蛋白质结构预测的最新进展与挑战。
J Chem Inf Model. 2024 Jan 8;64(1):76-95. doi: 10.1021/acs.jcim.3c01324. Epub 2023 Dec 18.

引用本文的文献

3
Protein Structural Phylogenetics.蛋白质结构系统发育学
Genome Biol Evol. 2025 Jul 30;17(8). doi: 10.1093/gbe/evaf139.
6
AlphaFold 3 accurately models natural variants of catalase KatA.AlphaFold 3能精确模拟过氧化氢酶KatA的天然变体。
Microbiol Spectr. 2025 Sep 2;13(9):e0067025. doi: 10.1128/spectrum.00670-25. Epub 2025 Aug 12.

本文引用的文献

4
Accurate modeling of peptide-MHC structures with AlphaFold.使用 AlphaFold 对肽-MHC 结构进行精确建模。
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验