School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.
Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind's AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.
近年来,人工智能驱动的蛋白质结构预测技术取得了进展,由此引发了一个问题:蛋白质结构预测问题是否已经得到解决?本文重点关注非球状蛋白质,在其生物学和治疗应用的背景下,强调 DeepMind 的 AlphaFold2 的诸多优势和潜在弱点。我们总结了使用预测局部距离差异测试(pLDDT)和预测对齐误差(PAE)值评估 AlphaFold2 模型质量和可靠性的细微差别。我们强调了 AlphaFold2 可以应用于各种类别的蛋白质,以及其中涉及的注意事项。讨论了如何将 AlphaFold2 模型与实验数据(小角 X 射线散射(SAXS)、溶液 NMR、冷冻电镜(cryo-EM)和 X 射线衍射)相结合的具体示例。最后,我们强调需要超越刚性、静态结构快照的结构预测,转向构象 ensemble 和替代的与生物学相关的状态。总体主题是,在使用 AlphaFold2 生成的模型生成可测试的假设和结构模型时,需要谨慎考虑,而不是将预测模型视为事实上的真实结构。