Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2408223121. doi: 10.1073/pnas.2408223121. Epub 2024 Nov 12.
Lipid bilayers, ubiquitous in living systems, form lubricious boundary layers in aqueous media, with broad relevance for biolubrication, especially in mechanically stressed environments such as articular cartilage in joints, as well as for modifying material interfacial properties. Model studies have revealed efficient lubricity by single-component lipid bilayers; synovial joints, however (e.g. hips and knees), comprise over a hundred different lipids, raising the question of whether this is natural redundancy or whether it confers any lubrication benefits. Here, we examine lubrication by progressively more complex mixtures of lipids representative of those in joints, using a surface forces balance at physiologically relevant salt concentrations and pressures. We find that different combinations of such lipids differ very significantly in the robustness of the bilayers to hemifusion under physiological loads (when lubrication breaks down), indicating a clear lubrication synergy afforded by multiple lipid types in the bilayers. Insight into the origins of this synergy is provided by detailed molecular dynamics simulations of potential profiles for the formation of stalks, the essential precursors of hemifusion, between bilayers of the different lipid mixtures used in the experiments. These reveal how bilayer hemifusion-and thus lubrication breakdown-depends on the detailed lipid bilayer composition, through the corresponding separation into domains that are better able to resist stalk formation. Our results shed light on the role of lipid-type proliferation in biolubrication synergy, point to improved treatment modalities for common joint diseases such as osteoarthritis, and indicate how lipid-based interfacial modification in a materials context may be optimized.
脂质双层在生命系统中无处不在,在水介质中形成光滑的边界层,在生物润滑方面具有广泛的相关性,特别是在机械应力环境中,如关节中的关节软骨,以及在改变材料界面性质方面。模型研究表明,单一成分的脂质双层具有高效的润滑性;然而,滑液关节(如髋关节和膝关节)包含超过一百种不同的脂质,这就提出了一个问题,即这种情况是自然冗余还是赋予了任何润滑益处。在这里,我们使用生理相关盐浓度和压力下的表面力平衡,研究了越来越复杂的代表关节中脂质的混合物的润滑性能。我们发现,在生理负荷下(即润滑失效时),这些不同的脂质组合对脂质双层的半融合的稳健性差异非常大,这表明脂质双层中多种脂质类型提供了明显的润滑协同作用。通过对实验中使用的不同脂质混合物的双层之间形成茎干(半融合的必要前体)的势能曲线的详细分子动力学模拟,为这种协同作用的起源提供了深入的了解。这些模拟揭示了双层的半融合——因此是润滑失效——如何取决于详细的脂质双层组成,通过相应的分离成更能抵抗茎干形成的域。我们的研究结果阐明了脂质类型增殖在生物润滑协同作用中的作用,为常见关节疾病(如骨关节炎)的治疗方法提供了新的思路,并指出了如何在材料方面优化基于脂质的界面修饰。