Suppr超能文献

MCRANet:基于MTSL的连接区域注意力网络,用于苏木精-伊红染色图像中PD-L1状态的分割。

MCRANet: MTSL-based connectivity region attention network for PD-L1 status segmentation in H&E stained images.

作者信息

Deng Xixiang, Luo Jiayang, Huang Pan, He Peng, Li Jiahao, Liu Yanan, Xiao Hualiang, Feng Peng

机构信息

The Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, 400044, Chongqing, China.

The Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, 400044, Chongqing, China.

出版信息

Comput Biol Med. 2025 Jan;184:109357. doi: 10.1016/j.compbiomed.2024.109357. Epub 2024 Nov 12.

Abstract

The quantitative analysis of Programmed death-ligand 1 (PD-L1) via Immunohistochemical (IHC) plays a crucial role in guiding immunotherapy. However, IHC faces challenges, including high costs, time consumption and result variability. Conversely, Hematoxylin-Eosin (H&E) staining offers cost-effectiveness, speed, and stable results. Nonetheless, H&E staining, which solely visualizes cellular morphological features, lacks clinical applicability in detecting biomarker expressions like PD-L1. Substituting H&E staining for IHC in determining PD-L1 status is a clinically significant and challenging task. Motivated by above observations, we propose a Multi-Task supervised learning (MTSL)-based connectivity region attention network (MCRANet) for PD-L1 status segmentation in H&E stained images. To reduce interference from non-tumor areas, the MTSL-based region attention is proposed to enhances the network's capability to distinguish between tumor and non-tumor regions. Consequently, this augmentation further improves the network's segmentation efficacy for PD-L1 positive and negative regions. Furthermore, the PD-L1 expression regions demonstrate interconnection throughout the tissue section. Leveraging this topological prior knowledge, we integrate a connectivity modeling module (CM module) within the MTSL-based region attention module (MRA module) to enhance the precision of MTSL-based region attention localization. This integration further improves the structural similarity between the segmentation results and the ground truth. Extensive visual and quantitative results demonstrate that our supervised-learning-guided MRA module produces more interpretable attention and the introduced CM module provides accurate positional attention to the MRA module. Compared to other state-of-the-art networks, MCRANet exhibits superior segmentation performance with a dice similarity coefficient (DSC) of 79.6 % on the lung squamous cell carcinoma (LUSC) PD-L1 status dataset.

摘要

通过免疫组织化学(IHC)对程序性死亡配体1(PD-L1)进行定量分析在指导免疫治疗中起着至关重要的作用。然而,IHC面临诸多挑战,包括成本高、耗时以及结果变异性。相反,苏木精-伊红(H&E)染色具有成本效益高、速度快且结果稳定的特点。尽管如此,仅能呈现细胞形态特征的H&E染色在检测如PD-L1等生物标志物表达方面缺乏临床适用性。在确定PD-L1状态时用H&E染色替代IHC是一项具有临床意义且具有挑战性的任务。受上述观察结果的启发,我们提出了一种基于多任务监督学习(MTSL)的连通区域注意力网络(MCRANet),用于在H&E染色图像中对PD-L1状态进行分割。为了减少非肿瘤区域的干扰,提出了基于MTSL的区域注意力,以增强网络区分肿瘤和非肿瘤区域的能力。因此,这种增强进一步提高了网络对PD-L1阳性和阴性区域的分割效果。此外,PD-L1表达区域在整个组织切片中呈现相互连接。利用这一拓扑先验知识,我们在基于MTSL的区域注意力模块(MRA模块)中集成了一个连通性建模模块(CM模块),以提高基于MTSL的区域注意力定位的精度。这种集成进一步提高了分割结果与真实情况之间的结构相似性。广泛的视觉和定量结果表明,我们的监督学习引导的MRA模块产生了更具可解释性的注意力,并且引入的CM模块为MRA模块提供了准确的位置注意力。与其他现有最先进的网络相比,MCRANet在肺鳞状细胞癌(LUSC)PD-L1状态数据集上表现出卓越的分割性能,骰子相似系数(DSC)为79.6%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验