Department of Computer Science, Technion, Haifa, Israel.
Department of Pathology, Ipatimup, Porto, Portugal.
Nat Commun. 2022 Nov 8;13(1):6753. doi: 10.1038/s41467-022-34275-9.
Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 - 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice.
程序性死亡配体 1(PD-L1)最近被用于乳腺癌作为免疫治疗的预测生物标志物。免疫组织化学(IHC)定量 PD-L1 的成本、时间和可变性是一个挑战。相比之下,苏木精和伊红(H&E)是一种用于癌症诊断的常规强染色。在这里,我们展示了可以通过使用最先进的深度学习技术从 H&E 染色图像中预测 PD-L1 表达。在两位专家病理学家和设计的注释软件的帮助下,我们构建了一个数据集来评估从乳腺癌的 H&E 中预测 PD-L1 的可行性。在 3376 名患者的队列中,我们的系统以 0.91-0.93 的高曲线下面积(AUC)预测 PD-L1 状态。我们的系统在两个外部数据集上进行了验证,包括一个独立的临床试验队列,显示出一致的预测性能。此外,所提出的系统预测了哪些病例容易被病理学家误判,表明它可以作为临床实践中的决策支持和质量保证系统。