Suppr超能文献

基于多实例学习从乳腺癌苏木精和伊红(H&E)染色的组织病理学图像预测程序性死亡配体1(PD-L1)表达

Multiple instance learning-based prediction of programmed death-ligand 1 (PD-L1) expression from hematoxylin and eosin (H&E)-stained histopathological images in breast cancer.

作者信息

Da Zhen, Yang Heng, Zhaxi Bianba, Sun Kaixiang, Bai Guohui, Wang Chao, Wang Feiyan, Pan Weijun, Du Rui

机构信息

Department of Pathology, People's Hospital of Xizang Autonomous Region, Lhasa, Xizang, China.

Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.

出版信息

PeerJ. 2025 Apr 15;13:e19201. doi: 10.7717/peerj.19201. eCollection 2025.

Abstract

Programmed death-ligand 1 (PD-L1) is an important biomarker increasingly used as a predictive marker in breast cancer immunotherapy. Immunohistochemical quantification remains the standard method for assessment. However, it presents challenges related to time, cost, and reliability. Hematoxylin and eosin (H&E) staining is a routine method in cancer pathology, known for its accessibility and consistently reliability. Deep learning has shown the potential in predicting biomarkers in cancer histopathology. This study employs a weakly supervised multiple instance learning (MIL) approach to predict PD-L1 expression from H&E-stained images using deep learning techniques. In the internal test set, the TransMIL method achieved an area under the curve (AUC) of 0.833, and in an independent external test set, it achieved an AUC of 0.799. Additionally, since RNA sequencing results indicate a threshold that allows for the separation of H&E pathology images, we further validated our approach using the public TCGA-TNBC dataset, achieving an AUC of 0.721. These findings demonstrates that the Transformer-based TransMIL model can effectively capture highly heterogeneous features within the MIL framework, exhibiting strong cross-center generalization capabilities. Our study highlights that appropriate deep learning techniques can enable effective PD-L1 prediction even with limited data, and across diverse regions and centers. This not only underscores the significant potential of deep learning in pathological artificial intelligence (AI) but also provides valuable insights for the rational and efficient allocation of medical resources.

摘要

程序性死亡配体1(PD-L1)是一种重要的生物标志物,在乳腺癌免疫治疗中越来越多地用作预测标志物。免疫组织化学定量仍然是评估的标准方法。然而,它存在与时间、成本和可靠性相关的挑战。苏木精和伊红(H&E)染色是癌症病理学中的常规方法,以其可及性和始终如一的可靠性而闻名。深度学习已显示出在癌症组织病理学中预测生物标志物的潜力。本研究采用弱监督多实例学习(MIL)方法,使用深度学习技术从H&E染色图像预测PD-L1表达。在内部测试集中,TransMIL方法的曲线下面积(AUC)为0.833,在独立的外部测试集中,其AUC为0.799。此外,由于RNA测序结果表明存在一个可用于区分H&E病理图像的阈值,我们使用公共的TCGA-TNBC数据集进一步验证了我们的方法,AUC为0.721。这些发现表明,基于Transformer的TransMIL模型可以在MIL框架内有效地捕获高度异质的特征,表现出强大的跨中心泛化能力。我们的研究强调,即使数据有限,并且跨越不同地区和中心,适当的深度学习技术也能够实现有效的PD-L1预测。这不仅突出了深度学习在病理人工智能(AI)中的巨大潜力,还为合理有效地分配医疗资源提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e79/12007500/59e26ac5ece5/peerj-13-19201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验