Tian Ye, Rusinek Henry, Masurkar Arjun V, Feng Yang
Department of Statistics, Columbia University, New York, NY.
Grossman School of Medicine, New York University, New York, NY.
Stat Med. 2024 Dec 30;43(30):5711-5747. doi: 10.1002/sim.10263. Epub 2024 Nov 12.
High-dimensional multinomial regression models are very useful in practice but have received less research attention than logistic regression models, especially from the perspective of statistical inference. In this work, we analyze the estimation and prediction error of the contrast-based -penalized multinomial regression model and extend the debiasing method to the multinomial case, providing a valid confidence interval for each coefficient and value of the individual hypothesis test. We also examine cases of model misspecification and non-identically distributed data to demonstrate the robustness of our method when some assumptions are violated. We apply the debiasing method to identify important predictors in the progression into dementia of different subtypes. Results from extensive simulations show the superiority of the debiasing method compared to other inference methods.
高维多项回归模型在实际应用中非常有用,但与逻辑回归模型相比,受到的研究关注较少,尤其是从统计推断的角度来看。在这项工作中,我们分析了基于对比的(\ell_1)惩罚多项回归模型的估计和预测误差,并将去偏方法扩展到多项情形,为每个系数和单个假设检验的(p)值提供有效的置信区间。我们还研究了模型误设和数据非齐次分布的情况,以证明我们的方法在一些假设被违反时的稳健性。我们应用去偏方法来识别不同亚型痴呆进展中的重要预测因子。大量模拟结果表明,去偏方法优于其他推断方法。