Suppr超能文献

预测痴呆风险的模型:系统综述。

Models for predicting risk of dementia: a systematic review.

机构信息

Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.

Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

J Neurol Neurosurg Psychiatry. 2019 Apr;90(4):373-379. doi: 10.1136/jnnp-2018-318212. Epub 2018 Jun 28.

Abstract

BACKGROUND

Information from well-established dementia risk models can guide targeted intervention to prevent dementia, in addition to the main purpose of quantifying the probability of developing dementia in the future.

METHODS

We conducted a systematic review of published studies on existing dementia risk models. The models were assessed by sensitivity, specificity and area under the curve (AUC) from receiver operating characteristic analysis.

RESULTS

Of 8462 studies reviewed, 61 articles describing dementia risk models were identified, with the majority of the articles modelling late life risk (n=39), followed by those modelling prediction of mild cognitive impairment to Alzheimer's disease (n=15), mid-life risk (n=4) and patients with diabetes (n=3). Age, sex, education, Mini Mental State Examination, the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery, Alzheimer's Disease Assessment Scale-cognitive subscale, body mass index, alcohol intake and genetic variables are the most common predictors included in the models. Most risk models had moderate-to-high predictive ability (AUC>0.70). The highest AUC value (0.932) was produced from a risk model developed for patients with mild cognitive impairment.

CONCLUSION

The predictive ability of existing dementia risk models is acceptable. Population-specific dementia risk models are necessary for populations and subpopulations with different characteristics.

摘要

背景

成熟的痴呆风险模型所提供的信息除了能定量预测未来发生痴呆的概率外,还可指导针对特定人群的干预措施,以预防痴呆。

方法

我们对已发表的现有痴呆风险模型研究进行了系统综述。通过受试者工作特征分析,评估模型的灵敏度、特异度和曲线下面积(AUC)。

结果

在回顾的 8462 项研究中,确定了 61 篇描述痴呆风险模型的文章,其中大部分(n=39)为老年期风险模型,其次是预测轻度认知障碍向阿尔茨海默病发展的模型(n=15)、中年期风险模型(n=4)和糖尿病患者模型(n=3)。年龄、性别、教育程度、简易精神状态检查、阿尔茨海默病协作研究-神经心理学评估成套测验、阿尔茨海默病评估量表-认知分量表、体重指数、饮酒量和遗传变量是模型中最常见的预测因素。大多数风险模型具有中高度预测能力(AUC>0.70)。针对轻度认知障碍患者开发的风险模型的 AUC 值最高(0.932)。

结论

现有痴呆风险模型的预测能力尚可。具有不同特征的人群和亚人群需要特定人群的痴呆风险模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验