Xu Yanghong, Tang Haopeng, Wang Yifei, Zhu Xiaofeng, Yang Long
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.
Nanomaterials (Basel). 2025 Apr 29;15(9):677. doi: 10.3390/nano15090677.
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)-diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO-DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻·h⁻ with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g·h) and bare DPP (7.62 μmol·g·h), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO reduction applications.
模仿利用太阳能生产高价值化学品的人工光合作用是应对基于化石燃料的能源危机和减轻温室效应的可持续策略。在本研究中,我们开发了一种二维(2D)氧化石墨烯(GO)-二酮吡咯并吡咯(DPP)薄膜光催化剂。氧化石墨烯纳米片促进了DPP纳米颗粒(约5纳米)的均匀分散,同时构建了一个高效的电荷传输网络以减轻载流子复合。在无牺牲剂的水溶液中可见光照射下,优化后的GO-DPP50薄膜催化剂表现出优异的性能,实现了32.62 μmol·g⁻¹·h⁻¹的CO生成速率,选择性接近100%。这分别比原始GO(8.65 μmol·g⁻¹·h⁻¹)和裸DPP(7.62 μmol·g⁻¹·h⁻¹)提高了2.77倍和3.28倍。机理分析揭示了一种协同机制。二维GO框架不仅作为DPP锚定的高表面积基底,还通过快速电子传输通道大幅抑制电荷复合。同时,均匀分布的DPP纳米颗粒提高了可见光吸收效率并促进了有效的光生载流子激发。这项工作为二维纳米材料与有机半导体的协同集成建立了一种新范式,为开发高性能薄膜基光催化剂以及CO还原应用中的选择性控制提供了关键设计原则。