Suppr超能文献

具有可变系数的势Kadomtsev-Petviashvili型耦合系统的 lump 解、lump-周期解、lump-孤子解和多孤子解。

Lump, lump-periodic, lump-soliton and multi soliton solutions for the potential Kadomtsev-Petviashvili type coupled system with variable coefficients.

作者信息

Chen Haiwei, Manafian Jalil, Eslami Baharak, Mendoza Salazar María José, Kumari Neha, Sharma Rohit, Joshi Sanjeev Kumar, Mahmoud K H, Alsubaie A Sa

机构信息

Shangqiu Institute of Technology, ShangQiu, 476000, China.

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

出版信息

Sci Rep. 2024 Nov 12;14(1):27682. doi: 10.1038/s41598-024-75536-5.

Abstract

In this article, the potential Kadomtsev-Petviashvili (pKP) type coupled system with variable coefficients is studied, which have many applications in wave phenomena and soliton interactions in a two-dimensional space with time. In this framework, Hirota bilinear form is applied to acquire diverse types of interaction lump solutions from the foresaid equation. Abundant lump, lump-periodic, lump-soliton and multi soliton solutions to the pKP system are presented by the Hirota bilinear form and a mixture of exponentials and trigonometric functions. Lump, lump-periodic, lump-soliton and multi soliton solutions are studied with the usage of symbolic computation. In addition, the symbolic computation and the applied methods for governing model are investigated. The movement role of the waves is investigated, and the theoretical analysis of the acquired solutions is discussed using the bilinear technique of all produced solutions with 2D and 3D plots with respective parameters. The computational difficulties and outcomes highlight the clarity, effectiveness, and simplicity of the approaches, suggesting that these schemes can be applied to a variety of dynamic and static nonlinear equations governing evolutionary phenomena in computational physics as well as to other real-world situations and a wide range of academic fields. We used software Maple 2024 "( http://www.maplesoft.com/ )".

摘要

本文研究了具有变系数的潜在 Kadomtsev-Petviashvili(pKP)型耦合系统,该系统在二维时空的波动现象和孤子相互作用中有许多应用。在此框架下,应用 Hirota 双线性形式从上述方程中获得不同类型的相互作用团块解。通过 Hirota 双线性形式以及指数函数和三角函数的混合形式,给出了 pKP 系统丰富的团块、团块-周期、团块-孤子和多孤子解。利用符号计算研究了团块、团块-周期、团块-孤子和多孤子解。此外,还研究了符号计算和控制模型的应用方法。研究了波的运动作用,并使用双线性技术对所有生成解进行理论分析,绘制了二维和三维图以及各自的参数。计算难点和结果突出了这些方法的清晰性、有效性和简单性,表明这些方案可应用于计算物理中控制演化现象的各种动态和静态非线性方程,以及其他实际情况和广泛的学术领域。我们使用了软件 Maple 2024“( http://www.maplesoft.com/ )” 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5f5/11557860/ae7452aac92b/41598_2024_75536_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验