Suppr超能文献

SNP 与血液炎症标志物的机器学习预测结直肠癌氟尿嘧啶类化疗疗效

SNPs and blood inflammatory marker featured machine learning for predicting the efficacy of fluorouracil-based chemotherapy in colorectal cancer.

机构信息

Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.

Department of Pharmacy, Baoshan Campus of Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Sci Rep. 2024 Nov 12;14(1):27700. doi: 10.1038/s41598-024-79036-4.

Abstract

Fluorouracil-based chemotherapy responses in colorectal cancer (CRC) patients vary widely, highlighting the role of pharmacogenomics in developing better predictive models. We analyzed 379 CRC patients receiving fluorouracil-based chemotherapy, collecting data on fluorouracil metabolism-related SNPs (TYMS, MTHFR, DPYD, RRM1), blood inflammatory markers, and clinical status. Six machine learning models-K-nearest neighbors, support vector machine, gradient boosting decision trees (GBDT), eXtreme Gradient Boosting (XGBoost), LightGBM, and random forest-were compared against multivariate logistic regression and a deep learning model (i.e., multilayer perceptron, MLP). Feature importance analysis highlighted seven predictors: histological grade, N and M staging, monocyte count, platelet-to-lymphocyte ratio, MTHFR rs1801131, and RRM1 rs11030918. In a five-fold cross-validation, XGBoost and GBDT exhibited superior performance, with Area Under Curve (AUC) of 0.88 ± 0.02. XGBoost excelled in identifying favorable prognosis (recall = 0.939). GBDT demonstrated balance in recognizing both categories, with a recall for favorable prognosis of 0.908 and a precision for unfavorable prognosis of 0.863. MLP had a similar AUC (0.87) with high precision for favorable prognosis (recall = 0.946). In external validation, XGBoost model achieved an accuracy of 0.79. An online prognostic tool based on XGBoost was developed, integrating metabolism-related SNPs and inflammatory markers, enhancing CRC treatment precision and supporting tailored chemotherapy.

摘要

氟尿嘧啶为基础的化疗在结直肠癌(CRC)患者中的反应差异很大,这凸显了药物基因组学在开发更好的预测模型中的作用。我们分析了 379 名接受氟尿嘧啶为基础的化疗的 CRC 患者,收集了与氟尿嘧啶代谢相关的 SNP(TYMS、MTHFR、DPYD、RRM1)、血液炎症标志物和临床状态的数据。我们比较了 6 种机器学习模型(K-最近邻、支持向量机、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)、LightGBM 和随机森林)与多变量逻辑回归和深度学习模型(即多层感知器,MLP)。特征重要性分析突出了七个预测因素:组织学分级、N 和 M 分期、单核细胞计数、血小板与淋巴细胞比值、MTHFR rs1801131 和 RRM1 rs11030918。在五折交叉验证中,XGBoost 和 GBDT 表现出优异的性能,曲线下面积(AUC)为 0.88±0.02。XGBoost 在识别有利预后方面表现出色(召回率=0.939)。GBDT 在识别这两个类别方面表现出平衡,有利预后的召回率为 0.908,不利预后的精度为 0.863。MLP 的 AUC(0.87)相似,对有利预后的精度较高(召回率=0.946)。在外部验证中,XGBoost 模型的准确率为 0.79。基于 XGBoost 开发了一个在线预后工具,整合了代谢相关的 SNP 和炎症标志物,提高了 CRC 治疗的精准度,并支持量身定制的化疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f8/11557704/2a96d3531bde/41598_2024_79036_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验