Suppr超能文献

基于深度学习的蜈蚣检测与识别

Detection and identification of centipedes based on deep learning.

作者信息

Chen Weitao, Yao Zhaoli, Wang Tao, Yang Fu, Zu Weiwei, Yao Chong, Jia Liangquan

机构信息

School of Information Engineering, Huzhou University, Huzhou, 313000, China.

Huzhou Central Hospital, Huzhou, 313000, China.

出版信息

Sci Rep. 2024 Nov 12;14(1):27719. doi: 10.1038/s41598-024-79206-4.

Abstract

The quantification of centipede populations is one of the key measures in achieving intelligent management of edible centipedes and promoting the upgrade of the rural centipede industry chain. However, current centipede counting techniques still face several challenges, including low detection accuracy, large model size, and difficulty in deployment on mobile devices. These challenges have limited existing network models to the experimental stage, preventing their practical application. To tackle the identified challenges, this study introduces a lightweight centipede detection model (FCM-YOLO), which enhances detection performance while ensuring fast processing and broad applicability. Based on the YOLOv5s framework, this model incorporates the C3FS module, resulting in fewer parameters and increased detection speed. Additionally, it integrates an attention module (CBAM) to suppress irrelevant information and improve target focus, thus enhancing detection accuracy. Furthermore, to enhance the precision of bounding box positioning, this study proposes a new loss function, CMPDIOU, for bounding box loss. Experimental results show that FCM-YOLO, while reducing parameter size, achieves an improved detection accuracy of 97.4% (2.7% higher than YOLOv5s) and reduces floating-point operations (FLOPs) to 11.5G (4.3G lower than YOLOv5s). In summary, this paper provides novel insights into the detection and enumeration of centipedes, contributing to the advancement of intelligent agricultural practices.

摘要

蜈蚣种群数量的量化是实现蜈蚣智能化管理和推动农村蜈蚣产业链升级的关键措施之一。然而,当前的蜈蚣计数技术仍面临诸多挑战,包括检测精度低、模型规模大以及在移动设备上部署困难等。这些挑战使得现有的网络模型仅停留在实验阶段,无法实际应用。为应对这些挑战,本研究引入了一种轻量级蜈蚣检测模型(FCM - YOLO),该模型在确保快速处理和广泛适用性的同时提高了检测性能。基于YOLOv5s框架,此模型融入了C3FS模块,减少了参数数量并提高了检测速度。此外,它集成了注意力模块(CBAM)以抑制无关信息并提高目标聚焦度,从而提升检测精度。再者,为提高边界框定位的精度,本研究针对边界框损失提出了一种新的损失函数CMPDIOU。实验结果表明,FCM - YOLO在减小参数规模的同时,实现了97.4%的改进检测精度(比YOLOv5s高2.7%),并将浮点运算量(FLOPs)降低至11.5G(比YOLOv5s低4.3G)。综上所述,本文为蜈蚣的检测与计数提供了新的见解,有助于推动智能农业实践的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bea/11557911/9e1394681cc5/41598_2024_79206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验