Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
BMC Genomics. 2024 Nov 13;25(1):1078. doi: 10.1186/s12864-024-10977-w.
Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system. An optimal drive system should be highly efficient for HDR-mediated gene conversion with minimal error rates. A gene-drive system, AgNosCd-1, with these attributes has been developed in the Anopheles gambiae G3 strain and serves as a framework for further development of population modification strains. To validate AgNosCd-1 as a versatile platform, it must perform well in a variety of genetic backgrounds.
We introduced or introgressed AgNosCd-1 into different genetic backgrounds, three in geographically-diverse Anopheles gambiae strains, and one each in an An. coluzzii and An. arabiensis strain. The overall drive inheritance, determined by presence of a dominant marker gene in the F2 hybrids, far exceeded Mendelian inheritance ratios in all genetic backgrounds that produced viable progeny. Haldane's rule was confirmed for AgNosCd-1 introgression into the An. arabiensis Dongola strain and sterility of the F1 hybrid males prevented production of F2 hybrid offspring. Back-crosses of F1 hybrid females were not performed to keep the experimental design consistent across all the genetic backgrounds and to avoid maternally-generated mutant alleles that might confound the drive dynamics. DNA sequencing of the target site in F1 and F2 mosquitoes with exceptional phenotypes revealed drive system-generated mutations resulting from non-homologous end joining events (NHEJ), which formed at rates similar to AgNosCd-1 in the G3 genetic background and were generated via the same maternal-effect mechanism.
These findings support the conclusion that the AgNosCd-1 drive system is robust and has high drive inheritance and gene conversion efficiency accompanied by low NHEJ mutation rates in diverse An. gambiae s.l. laboratory strains.
由于近年来全球疾病发病率的下降已经停滞,需要新型技术来对抗疟原虫的疟蚊传播媒介。利用 Cas9/guide RNA (gRNA) 系统的基因驱动方法被开发出来,以抑制按蚊种群或通过提高它们对寄生虫的抵抗力来改变它们。这些系统依赖于染色体 DNA 靶位点的成功切割,然后在生殖细胞中进行同源定向修复 (HDR),以偏向驱动系统的遗传。一个理想的驱动系统应该具有高效的 HDR 介导的基因转换,且错误率最低。在 Anopheles gambiae G3 品系中开发了一种具有这些特性的基因驱动系统 AgNosCd-1,它是进一步开发种群修饰品系的框架。为了验证 AgNosCd-1 作为一种多功能平台的有效性,它必须在各种遗传背景下表现良好。
我们将 AgNosCd-1 引入或导入到不同的遗传背景中,在三个地理上不同的 Anopheles gambiae 品系中,以及一个 An. coluzzii 和 An. arabiensis 品系中各有一个。通过在 F2 杂种中存在显性标记基因来确定的总体驱动遗传,远远超过了在所有产生可育后代的遗传背景中孟德尔遗传比例。Haldane 法则得到了确认,AgNosCd-1 导入到 An. arabiensis Dongola 品系中,并且 F1 杂种雄性的不育性阻止了 F2 杂种后代的产生。没有进行 F1 杂种雌性的回交,以保持所有遗传背景下的实验设计一致,并避免可能混淆驱动动力学的母体产生的突变等位基因。对具有异常表型的 F1 和 F2 蚊子中的靶位点进行 DNA 测序,揭示了非同源末端连接事件 (NHEJ) 产生的驱动系统生成的突变,其形成率与 G3 遗传背景中的 AgNosCd-1 相似,并且通过相同的母体效应机制产生。
这些发现支持这样的结论,即 AgNosCd-1 驱动系统在不同的 An. gambiae s.l. 实验室品系中具有强大的功能,具有较高的驱动遗传和基因转换效率,并伴有较低的 NHEJ 突变率。