National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
Environ Pollut. 2024 Dec 15;363(Pt 2):125300. doi: 10.1016/j.envpol.2024.125300. Epub 2024 Nov 12.
Polyurethane (PU), a widely used and durable plastic, persists in the environment, resulting in significant waste management challenges. Therefore, developing eco-friendly degradation technologies, such as screening for efficient biodegrading microorganism strains, is urgently needed to address this issue. Bacillus velezensis MB01B, an efficient polyester PU-degrading bacterium, was isolated from landfill soil and demonstrated the ability to degrade 91.4% of 0.75% Impranil DLN within 24 h under the optimal conditions (30.5 °C and initial pH 6.5). To assess the degradation capability of MB01B, three PU substrates of increasing complexity-Impranil DLN film, polyester thermoplastic polyurethane (TPU) film, and commercial PU desk mat-were tested; after 30 days, weight losses of 24.8%, 18.3%, and 5.4% were observed, respectively. In addition, SEM images showed significant morphological changes on the surface of these PU materials after treatment with MB01B. FTIR analysis of Impranil DLN films following degradation showed reductions in key functional groups (ester and urethane); and the identification of neopentyl glycol and 1,6-hexanediol as degradation intermediates suggested MB01B possesses the capability to hydrolyze ester and urethane bonds. Concurrently, genome sequencing combined with RT-qPCR identified several enzymes, including urethanases and esterases/lipases, involved in PU degradation. Based on these results, the pathway for MB01B to degrade Impranil DLN was inferred. Finally, MB01B was successfully formulated into a solid microbial inoculum with favorable storage properties and used for in-situ degradation of the commercial PU materials (Impranil DLN films, TPU films and PU desk mats) in landfill soil, underscoring its potential for the in-situ biological treatment of PU plastic wastes.
聚氨基甲酸酯(PU)是一种广泛使用且耐用的塑料,在环境中持久存在,导致了重大的废物管理挑战。因此,迫切需要开发环保的降解技术,例如筛选高效的可生物降解微生物菌株。从垃圾填埋场土壤中分离出一种高效聚酯 PU 降解菌,名为 Bacillus velezensis MB01B,该菌在最佳条件(30.5°C 和初始 pH 6.5)下,可在 24 小时内将 0.75%Impranil DLN 的降解率提高到 91.4%。为了评估 MB01B 的降解能力,我们测试了三种复杂程度递增的 PU 基质:Impranil DLN 薄膜、聚酯热塑性聚氨酯(TPU)薄膜和商用 PU 桌垫。30 天后,观察到分别有 24.8%、18.3%和 5.4%的质量损失。此外,SEM 图像显示,经 MB01B 处理后,这些 PU 材料的表面形态发生了显著变化。FTIR 分析表明,Impranil DLN 薄膜在降解后其关键功能基团(酯基和氨酯基)减少;并鉴定出了新戊二醇和 1,6-己二醇作为降解中间产物,这表明 MB01B 具有水解酯键和氨酯键的能力。同时,基因组测序结合 RT-qPCR 鉴定出了几种参与 PU 降解的酶,包括尿烷酶和酯酶/脂肪酶。基于这些结果,推断出 MB01B 降解 Impranil DLN 的途径。最后,成功地将 MB01B 制成具有良好储存性能的固体微生物接种剂,并将其用于垃圾填埋场土壤中商用 PU 材料(Impranil DLN 薄膜、TPU 薄膜和 PU 桌垫)的原位降解,这突显了其在原位生物处理 PU 塑料废物方面的潜力。