Suppr超能文献

海洋真菌 Cladosporium halotolerans 6UPA1 对聚酯型聚氨酯的生物降解作用。

Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1.

机构信息

Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China.

Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.

出版信息

J Hazard Mater. 2022 Sep 5;437:129406. doi: 10.1016/j.jhazmat.2022.129406. Epub 2022 Jun 18.

Abstract

Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80% of Impranil PU after 3 days of incubation at 28 ℃ by breaking the carbonyl groups (1732 cm) and C-N-H bonds (1532 cm and 1247 cm) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation" was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.

摘要

缺乏降解性和聚合物废物的积累增加了对环境健康的风险。由于价格上涨和供应链中断,聚合物合成原料短缺,最近回收聚合物废料作为原料变得越来越重要。作为一种重要的聚合物,聚氨酯(PU)广泛应用于现代生活中,因此,为了避免其在环境中的积累,希望其能够生物降解。在这项研究中,我们从深海中分离出一株真菌 Cladosporium halotolerans,它可以在含有聚酯 PU(Impranil DLN)的矿物培养基中生长。此外,我们通过傅里叶变换红外(FTIR)光谱分析证实,在 28℃下孵育 3 天后,它可以将高达 80%的 Impranil PU 降解,破坏羰基(1732cm)和 C-N-H 键(1532cm 和 1247cm)。气相色谱-质谱(GC-MS)分析显示多元醇和烷烃是 PU 降解的中间产物,表明酯键和氨酯键的水解。在以 PU 为碳源的 7 天龄培养物中检测到酯酶和脲酶活性。转录组分析表明,当在 Impranil PU 上培养时,表达了许多编码酶的细胞外蛋白基因,如角质酶、脂肪酶、过氧化物酶和疏水性表面结合蛋白 A(HsbA)。酵母双杂交试验表明,疏水性表面结合蛋白 ChHsbA1 与诱导型酯酶 ChLip1(脂肪酶)和 ChCut1(角质酶)直接相互作用。此外,在 Impranil PU 诱导基因中,KEGG 途径“脂肪酸降解”显著富集,表明真菌可能通过该途径利用降解中间产物来产生能量。总之,我们的数据表明,C. halotolerans 分泌的酯酶和疏水性表面结合蛋白在 Impranil PU 的吸收和随后的降解中起着重要作用。我们的研究为深海真菌对 Impranil PU 的生物降解提供了机制上的见解,并为未来生物技术 PU 回收的发展提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验