Nasir Mohd Shafiq, Yahya Ahmad Ramli Mohd, Noh Nur Asshifa Md
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
Bioprocess Biosyst Eng. 2025 Feb;48(2):221-232. doi: 10.1007/s00449-024-03103-3. Epub 2024 Nov 13.
The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation. The maximum biomass produced was 11.29 ± 0.20 g/L obtained at 400 rpm, while the maximum rhamnolipid production was 5.06 ± 1.17 g/L at 600 rpm, giving a rhamnolipid productivity of 0.023 g/L/h. High agitation enhances substrate availability by breaking the hydrophobic semi-solid PSO into smaller substrate particles, increasing surface contact area, thus facilitating the PSO utilisation by P. aeruginosa USM-AR2, thereby inducing rhamnolipid production. This study further demonstrates the ability of rhamnolipid to solubilize and disperse sludge oil, which typically remains a solid at room temperature, in the liquid medium. GCMS analysis showed that five fatty acids, namely palmitic acid, myristic acid, stearic acid, methyl ester and linoleic acid, have been utilised. The rhamnolipid showed an oil spreading test result of 160 mm of waste engine oil displacement compared to control using distilled water that remained non-displaced, and a critical micelle concentration (CMC) of 17 mg/L. In emulsification index (E) assay, the rhamnolipid was shown to emulsify toluene (66.7% ± 7.2), waste engine oil (58.3% ± 7.2), kerosene (41.8% ± 4.8) and n-hexane (33.1% ± 5.7). UPLC analysis on rhamnolipid revealed a congener mixture of rhamnolipid, namely di-rhamnolipid and mono-rhamnolipid mixture. This is the first report on the employment of an integrated foam control reactor system with PSO as the carbon source for rhamnolipid production by P. aeruginosa USM-AR2 culture.
该研究聚焦于在3升搅拌罐反应器(STR)中,以棕榈污泥油(PSO)作为唯一碳源,通过铜绿假单胞菌USM-AR2的分批发酵来生产鼠李糖脂。评估了不同搅拌速率对PSO在培养基中分散的影响,以改善生物量生长和鼠李糖脂产量。设计并改装了一个机械泡沫收集和循环系统到STR中,以克服发酵过程中严重的泡沫形成问题。在400转/分钟时获得的最大生物量为11.29±0.20克/升,而在600转/分钟时最大鼠李糖脂产量为5.06±1.17克/升,鼠李糖脂生产率为0.023克/升/小时。高搅拌速率通过将疏水性半固体PSO分解成更小的底物颗粒,增加表面接触面积,从而提高底物可用性,进而促进铜绿假单胞菌USM-AR2对PSO的利用,从而诱导鼠李糖脂的产生。本研究进一步证明了鼠李糖脂能够使通常在室温下为固体的污泥油在液体培养基中溶解和分散。气相色谱-质谱联用(GCMS)分析表明,已利用了五种脂肪酸,即棕榈酸、肉豆蔻酸、硬脂酸、甲酯和亚油酸。与使用蒸馏水且未发生位移的对照相比,鼠李糖脂的油扩散试验结果显示废机油位移为160毫米,临界胶束浓度(CMC)为17毫克/升。在乳化指数(E)测定中,鼠李糖脂显示出对甲苯(66.7%±7.2)、废机油(58.3%±7.2)、煤油(41.8%±4.8)和正己烷(33.1%±5.7)的乳化能力。对鼠李糖脂的超高效液相色谱(UPLC)分析揭示了鼠李糖脂的同系物混合物,即二鼠李糖脂和单鼠李糖脂混合物。这是关于采用集成泡沫控制反应器系统,以PSO作为碳源用于铜绿假单胞菌USM-AR2培养生产鼠李糖脂的首次报道。