文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

亚细胞质谱检测揭示糖尿病心脏中的高血糖记忆。

Subcellular mass spectrometric detection unveils hyperglycemic memory in the diabetic heart.

机构信息

Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.

出版信息

J Diabetes. 2024 Nov;16(11):e70033. doi: 10.1111/1753-0407.70033.


DOI:10.1111/1753-0407.70033
PMID:39539089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11561303/
Abstract

BACKGROUND: Intensive glycemic control is insufficient to reduce the risk of heart failure in patients with diabetes mellitus. While the hyperglycemic memory in the diabetic cardiomyopathy has been well documented, its underlying mechanisms are not fully understood. The present study tried to investigate whether the dysregulated proteins/biological pathways, which persistently altered in diabetic hearts during normoglycemia, participate in the hyperglycemic memory. METHODS: Hearts of streptozotocin-induced diabetic mice, with or without intensive glycemic control using slow-release insulin implants, were collected. Proteins from total heart samples and subcellular fractions were assessed by mass spectrometry, Western blotting, and KEGG pathway enrichment analysis. mRNA sequencing was used to determine whether the persistently altered proteins were regulated at the transcriptional or post-transcriptional level. RESULTS: Western blot validation of several proteins with high pathophysiological importance, including MYH7, HMGCS2, PDK4, and BDH1, indicated that mass spectrometry was able to qualitatively, but not quantitatively, reflect the fold changes of certain proteins in diabetes. Pathway analysis revealed that the peroxisome, PPAR pathway, and fatty acid metabolism could be efficiently rescued by glycemic control. However, dysregulation of oxidative phosphorylation and reactive oxygen species persisted even after normalization of hyperglycemia. Notably, mRNA sequencing revealed that dysregulated proteins in the oxidative phosphorylation pathway were not accompanied by coordinated changes in mRNA levels, indicating post-transcriptional regulation. Moreover, literature review and bioinformatics analysis suggested that hyperglycemia-induced persistent alterations of miRNAs targeted genes from the persistently dysregulated oxidative phosphorylation pathway, whereas, oxidative phosphorylation dysfunction-induced ROS regulated miRNA expression, which thereby might sustained the dysregulation of miRNAs. CONCLUSIONS: Glycemic control cannot rescue hyperglycemia-induced alterations of subcellular proteins in the diabetic heart, and persistently altered proteins are involved in multiple functional pathways, including oxidative phosphorylation. These findings might provide novel insights into hyperglycemic memory in diabetic cardiomyopathy.

摘要

背景:强化血糖控制不足以降低糖尿病患者心力衰竭的风险。虽然糖尿病心肌病中的高血糖记忆已经得到充分证实,但其潜在机制尚不完全清楚。本研究试图探讨在正常血糖下,持续改变糖尿病心脏的失调蛋白/生物学途径是否参与高血糖记忆。

方法:收集链脲佐菌素诱导的糖尿病小鼠的心脏,并用或不用缓释胰岛素植入进行强化血糖控制。通过质谱、Western blot 和 KEGG 途径富集分析评估总心脏样本和亚细胞部分的蛋白质。mRNA 测序用于确定持续改变的蛋白质是否在转录或转录后水平受到调节。

结果:对几种具有高病理生理重要性的蛋白质(包括 MYH7、HMGCS2、PDK4 和 BDH1)进行 Western blot 验证,表明质谱能够定性但不能定量反映糖尿病中某些蛋白质的变化倍数。途径分析表明,过氧化物酶体、PPAR 途径和脂肪酸代谢可以通过血糖控制得到有效挽救。然而,即使在高血糖正常化后,氧化磷酸化和活性氧的失调仍然存在。值得注意的是,mRNA 测序显示,氧化磷酸化途径失调的蛋白质并不伴有 mRNA 水平的协调变化,表明存在转录后调节。此外,文献综述和生物信息学分析表明,高血糖诱导的 miRNA 靶向基因的持续改变与氧化磷酸化途径的持续失调有关,而氧化磷酸化功能障碍诱导的 ROS 调节 miRNA 表达,从而可能维持 miRNA 的失调。

结论:血糖控制不能挽救糖尿病心脏中高血糖诱导的亚细胞蛋白质的改变,持续改变的蛋白质参与多个功能途径,包括氧化磷酸化。这些发现可能为糖尿病心肌病中的高血糖记忆提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/5c1021f22e81/JDB-16-e70033-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/2b4f1f0f3caf/JDB-16-e70033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/1f1332c5dd16/JDB-16-e70033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/1f5f4148edbc/JDB-16-e70033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/428599c825db/JDB-16-e70033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/5c1021f22e81/JDB-16-e70033-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/2b4f1f0f3caf/JDB-16-e70033-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/1f1332c5dd16/JDB-16-e70033-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/1f5f4148edbc/JDB-16-e70033-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/428599c825db/JDB-16-e70033-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0131/11561303/5c1021f22e81/JDB-16-e70033-g007.jpg

相似文献

[1]
Subcellular mass spectrometric detection unveils hyperglycemic memory in the diabetic heart.

J Diabetes. 2024-11

[2]
MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart.

Eur Heart J. 2015-11-9

[3]
High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ.

Cell Physiol Biochem. 2018

[4]
Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1.

Cell Biochem Biophys. 2013

[5]
Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy FAK/SIRT3/ROS Pathway in Cardiomyocyte.

Front Endocrinol (Lausanne). 2021

[6]
Hyperglycemic memory in diabetic cardiomyopathy.

Front Med. 2022-2

[7]
Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice.

Mol Med Rep. 2011-5-16

[8]
Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD.

Circ Res. 2020-10-23

[9]
Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.

Am J Physiol Cell Physiol. 2014-6-11

[10]
Metabolites and Genes behind Cardiac Metabolic Remodeling in Mice with Type 1 Diabetes Mellitus.

Int J Mol Sci. 2022-1-26

本文引用的文献

[1]
Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction.

Mol Ther Nucleic Acids. 2022-12-14

[2]
Protein PDK4 Interacts with HMGCS2 to Facilitate High Glucoseinduced Myocardial Injuries.

Curr Mol Med. 2023

[3]
HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress.

Bioengineered. 2022-5

[4]
SGLT2 Inhibitors in Type 2 Diabetes Mellitus and Heart Failure-A Concise Review.

J Clin Med. 2022-3-8

[5]
Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure.

J Clin Invest. 2022-3-1

[6]
Hyperglycemic memory in diabetic cardiomyopathy.

Front Med. 2022-2

[7]
The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity.

Cells. 2021-11-21

[8]
Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.

Cardiovasc Diabetol. 2021-1-4

[9]
Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study.

Eur Heart J. 2021-1-7

[10]
The nuclear and cytoplasmic roles of miR-320 in non-alcoholic fatty liver disease.

Aging (Albany NY). 2020-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索