Suppr超能文献

使用深度量子和先进迁移学习机制的面部表情识别

Facial emotion recognition using deep quantum and advanced transfer learning mechanism.

作者信息

Alsubai Shtwai, Alqahtani Abdullah, Alanazi Abed, Sha Mohemmed, Gumaei Abdu

机构信息

Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

出版信息

Front Comput Neurosci. 2024 Oct 30;18:1435956. doi: 10.3389/fncom.2024.1435956. eCollection 2024.

Abstract

INTRODUCTION

Facial expressions have become a common way for interaction among humans. People cannot comprehend and predict the emotions or expressions of individuals through simple vision. Thus, in psychology, detecting facial expressions or emotion analysis demands an assessment and evaluation of decisions for identifying the emotions of a person or any group during communication. With the recent evolution of technology, AI (Artificial Intelligence) has gained significant usage, wherein DL (Deep Learning) based algorithms are employed for detecting facial expressions.

METHODS

The study proposes a system design that detects facial expressions by extracting relevant features using a Modified ResNet model. The proposed system stacks building-blocks with residual connections and employs an advanced extraction method with quantum computing, which significantly reduces computation time compared to conventional methods. The backbone stem utilizes a quantum convolutional layer comprised of several parameterized quantum-filters. Additionally, the research integrates residual connections in the ResNet-18 model with the Modified up Sampled Bottle Neck Process (MuS-BNP), retaining computational efficacy while benefiting from residual connections.

RESULTS

The proposed model demonstrates superior performance by overcoming the issue of maximum similarity within varied facial expressions. The system's ability to accurately detect and differentiate between expressions is measured using performance metrics such as accuracy, F1-score, recall, and precision.

DISCUSSION

This performance analysis confirms the efficacy of the proposed system, highlighting the advantages of quantum computing in feature extraction and the integration of residual connections. The model achieves quantum superiority, providing faster and more accurate computations compared to existing methodologies. The results suggest that the proposed approach offers a promising solution for facial expression recognition tasks, significantly improving both speed and accuracy.

摘要

引言

面部表情已成为人类互动的一种常见方式。人们无法通过简单的视觉来理解和预测个体的情绪或表情。因此,在心理学中,检测面部表情或进行情绪分析需要对在交流过程中识别一个人或任何群体的情绪的决策进行评估。随着技术的不断发展,人工智能(AI)得到了广泛应用,其中基于深度学习(DL)的算法被用于检测面部表情。

方法

该研究提出了一种系统设计,通过使用改进的残差网络(ResNet)模型提取相关特征来检测面部表情。所提出的系统将具有残差连接的构建模块堆叠在一起,并采用了一种先进的量子计算提取方法,与传统方法相比,显著减少了计算时间。主干部分利用由几个参数化量子滤波器组成的量子卷积层。此外,该研究将ResNet - 18模型中的残差连接与改进的上采样瓶颈过程(MuS - BNP)相结合,在受益于残差连接的同时保持计算效率。

结果

所提出的模型通过克服不同面部表情之间最大相似度的问题,展现出卓越的性能。使用诸如准确率、F1分数、召回率和精确率等性能指标来衡量该系统准确检测和区分表情的能力。

讨论

这种性能分析证实了所提出系统的有效性,突出了量子计算在特征提取以及残差连接整合方面的优势。该模型实现了量子优越性,与现有方法相比,提供了更快、更准确的计算。结果表明,所提出的方法为面部表情识别任务提供了一个有前景的解决方案,显著提高了速度和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/635c/11557492/4acca87d273e/fncom-18-1435956-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验