Zhang Fangqin, Shen Zhan, Huang Siyi, Zhu Yuan, Yi Ming
Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.
Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.
Methods. 2025 Jan;233:42-51. doi: 10.1016/j.ymeth.2024.11.006. Epub 2024 Nov 13.
Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.
空间转录组学(ST)技术的最新进展显著提高了全面表征组织微环境中基因表达模式的能力,同时至关重要地保留了空间背景。然而,在单细胞水平上识别空间域仍然是阐明生物学过程中的一项重大挑战。为了解决这一问题,开发了SpaInGNN,这是一个复杂的图神经网络(GNN)框架,通过将空间位置数据、组织学信息和基因表达谱整合到低维潜在嵌入中来准确描绘空间域。此外,为了充分利用空间坐标数据,基于图神经网络的空间整合(SpaInGNN)在基因表达谱预聚类之后,通过纳入组织图像距离和欧几里得距离来优化为空间位置构建的图。然后使用自监督GNN对这个优化后的图进行嵌入,从而最小化自重构损失。通过将SpaInGNN应用于多个连续组织切片的优化图,本研究减轻了数据分析中批次效应的影响。所提出的方法在空间域识别准确性方面有显著提高,在小鼠嗅球和人类外侧前额叶皮层样本中都能更真实地呈现组织结构。