Department of Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China.
Department of Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, 400044, China.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btae023.
Spatial clustering is essential and challenging for spatial transcriptomics' data analysis to unravel tissue microenvironment and biological function. Graph neural networks are promising to address gene expression profiles and spatial location information in spatial transcriptomics to generate latent representations. However, choosing an appropriate graph deep learning module and graph neural network necessitates further exploration and investigation.
In this article, we present GRAPHDeep to assemble a spatial clustering framework for heterogeneous spatial transcriptomics data. Through integrating 2 graph deep learning modules and 20 graph neural networks, the most appropriate combination is decided for each dataset. The constructed spatial clustering method is compared with state-of-the-art algorithms to demonstrate its effectiveness and superiority. The significant new findings include: (i) the number of genes or proteins of spatial omics data is quite crucial in spatial clustering algorithms; (ii) the variational graph autoencoder is more suitable for spatial clustering tasks than deep graph infomax module; (iii) UniMP, SAGE, SuperGAT, GATv2, GCN, and TAG are the recommended graph neural networks for spatial clustering tasks; and (iv) the used graph neural network in the existent spatial clustering frameworks is not the best candidate. This study could be regarded as desirable guidance for choosing an appropriate graph neural network for spatial clustering.
The source code of GRAPHDeep is available at https://github.com/narutoten520/GRAPHDeep. The studied spatial omics data are available at https://zenodo.org/record/8141084.
空间聚类对于空间转录组学数据分析至关重要且具有挑战性,可用于揭示组织微环境和生物功能。图神经网络有望解决空间转录组学中的基因表达谱和空间位置信息问题,从而生成潜在表示。然而,选择合适的图深度学习模块和图神经网络需要进一步探索和研究。
本文提出了 GRAPHDeep,用于组装用于异质空间转录组学数据的空间聚类框架。通过整合 2 个图深度学习模块和 20 个图神经网络,可以为每个数据集确定最合适的组合。将构建的空间聚类方法与最先进的算法进行比较,以证明其有效性和优越性。重要的新发现包括:(i)空间组学数据的基因或蛋白质数量在空间聚类算法中非常重要;(ii)变分图自动编码器比深度图信息最大化模块更适合空间聚类任务;(iii)UniMP、SAGE、SuperGAT、GATv2、GCN 和 TAG 是空间聚类任务推荐的图神经网络;(iv)现有空间聚类框架中使用的图神经网络不是最佳候选者。本研究可以作为选择适合空间聚类的图神经网络的理想指导。
GRAPHDeep 的源代码可在 https://github.com/narutoten520/GRAPHDeep 上获得。研究的空间组学数据可在 https://zenodo.org/record/8141084 上获得。