Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
Methods Mol Biol. 2025;2870:227-243. doi: 10.1007/978-1-0716-4213-9_12.
Numerous high-specificity Cas9 variants have been engineered for precision genome editing. These variants typically harbor multiple mutations designed to alter the Cas9-single guide RNA (sgRNA)-DNA complex interactions for reduced off-target cleavage. By dissecting the contributions of individual mutations, we attempt to derive principles for designing high-specificity Cas9 variants. Here, we computationally modeled the specificity harnessing mutations of the widely used Cas9 isolated from Streptococcus pyogenes (SpCas9) and investigated their individual mutational effects. We quantified the mutational effects in terms of energy and contact changes by comparing the wild-type and mutant structures. We found that these mutations disrupt the protein-protein or protein-DNA contacts within the Cas9-sgRNA-DNA complex. We also identified additional impacted amino acid sites via energy changes that constitute the structural microenvironment encompassing the focal mutation, giving insights into how the mutations contribute to the high-specificity phenotype of SpCas9. Our method outlines a strategy to evaluate mutational effects that can facilitate rational design for Cas9 optimization.
已经开发了许多高特异性 Cas9 变体用于精确基因组编辑。这些变体通常包含多个突变,旨在改变 Cas9-单指导 RNA(sgRNA)-DNA 复合物相互作用,以减少脱靶切割。通过剖析单个突变的贡献,我们试图得出设计高特异性 Cas9 变体的原则。在这里,我们通过计算建模广泛用于从酿脓链球菌(SpCas9)中分离的 Cas9 的特异性利用突变,并研究了它们各自的突变效应。我们通过比较野生型和突变型结构,从能量和接触变化的角度量化了突变效应。我们发现这些突变破坏了 Cas9-sgRNA-DNA 复合物内的蛋白质-蛋白质或蛋白质-DNA 接触。我们还通过能量变化鉴定了额外受影响的氨基酸位点,这些能量变化构成了包含焦点突变的结构微环境,深入了解突变如何有助于 SpCas9 的高特异性表型。我们的方法概述了一种评估突变效应的策略,这可以促进 Cas9 优化的合理设计。